A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Changes in Bioavailability of Omega-3 (DHA) through Alpha-Tocopheryl Phosphate Mixture (TPM) after Oral Administration in Rats. | LitMetric

Changes in Bioavailability of Omega-3 (DHA) through Alpha-Tocopheryl Phosphate Mixture (TPM) after Oral Administration in Rats.

Nutrients

Phosphagenics Limited, Unit A8, 2A Westall Road, Clayton, Melbourne, VIC 3168, Australia.

Published: September 2017

Benefits of Omega-3 Docosahexaenoic acid (DHA) supplements are hindered by their poor solubility and bioavailability. This study investigated the bioavailability of various formulations of Omega-3 and tocopheryl phosphate mixture (TPM), following oral administration in rats, and assessed whether TPM could improve the oral absorption of DHA. The rats were administered with a high (265.7 mg/kg) or low dose (88.6 mg/kg) of DHA. TPM was examined at 1:0.1 w/w (low TPM dose) and 1:0.5 w/w (high TPM dose). Over 24 h, the DHA plasma concentration followed a TPM dose-dependent relationship, reflected in the higher mean C values (78.39 and 91.95 μg/mL) and AUC values (1396.60 and 1560.60) for the low and high TPM, respectively. The biggest difference between the low dose DHA control (LDCont) and TPM formulations was at 4 h after supplementation, where the low and high TPM showed a mean 20% (ns) and 50% ( < 0.05) increase in DHA plasma concentrations versus the control formulation. After correcting for baseline endogenous DHA, the mean plasma DHA at 4 h produced by the LD-HTPM was nearly double (90%) the LDC control ( = 0.057). This study demonstrated that co-administering omega-3 with TPM significantly increases the bioavailability of DHA in the plasma, suggesting potential use for commercially available TPM + DHA fortified products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622802PMC
http://dx.doi.org/10.3390/nu9091042DOI Listing

Publication Analysis

Top Keywords

dha plasma
16
tpm
12
high tpm
12
dha
11
phosphate mixture
8
mixture tpm
8
tpm oral
8
oral administration
8
administration rats
8
low dose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!