Coagulase-negative staphylococci (CNS) are one of the primer agents of blood stream infections (BSI) and catheter-related bloodstream infections (CR-BSI) which are associated mostly with the usage of central venous catheters and, important causes of morbidity and mortality despite the usage of antibacterial and supportive treatment. It is important to determine the properties of these causative microorganisms in order to make appropriate treatment of such infections. The aims of our study were to evaluate the biofilm formation of coagulase negative staphylococci (CNS) which were causative agents of bloodstream (BSI) and catheter related bloodstream infections (CR-BSI), to determine the minimum inhibitory concentration (MIC) of planktonic forms and minimal biofilm eradication concentration (MBEC) of sessile forms for vancomycin and daptomycin and to evaluate the efficacy of these antibiotics in infections with biofilm-forming isolates in vitro. A total of 65 CoNS (n= 26 catheter colonizers, n= 28 CR-BSI, n= 11 BSI agents) were identified by conventional methods and also with BD Phoenix (Becton Dickinson, USA) and Bruker Microflex MS (Bruker Daltonics, Germany) systems. Methicillin resistance was determined by the presence of mecA gene with PCR. MIC values of vancomycin and daptomycin were investigated by broth microdilution, for daptomycin medium containing 25 and 50 μg/ml Ca++ were used. Assessment of biofilm formation and detection of MBEC were determined by microplate method. The clonal relationship was investigated by the PFGE method. A total of 65 isolates; 26 catheter colonizers, 28 CR-BSI agents and 11 BSI agents were evaluated and identified as Staphylococcus epidermidis (n= 33), Staphylococcus haemolyticus (n= 16), Staphylococcus hominis (n= 15), and Staphylococcus capitis (n= 1). 81.5% of the isolates were found to be methicillin resistant and all of them were found to be sensitive to vancomycin (MIC= 0.125-4 μg/ml) and daptomycin (MIC= 0.062-0.25 μg/ml in 25 μg/ml Ca++ and MIC= 0.031-0.50 μg/ml in 50 μg/ml Ca++ containing medium). MIC values were lower in medium containing 50 μg/ml Ca++ for daptomycin. As it is known that the efficacy of daptomycin depends on the physiological levels of Ca++, which causes conformational changes in the structure of these antibacterials. Our findings also suggested that high levels of Ca++ are needed to ensure the efficacy of daptomycin. All of the isolates produced biofilm at different strengths of positivity (n= 12/18.5% weak, n= 35/%53.8 moderate, n= 18/%27.7 strong). MBEC and MBEC/MIC values for vancomycin were found to be higher than daptomycin (p< 0.001). Strong biofilm producers had higher MBEC and MBEC/MIC, MBEC50/MIC50 ve MBEC90/MIC90 values (p< 0.05). Especially in infections with biofilm forming isolates, the detection of only MIC values are not always sufficient in the treatment of biofilm-related infections as they reflect the sensitivity of planktonic bacteria. The inconsistency between the MIC and MBEC values and the high rates of MBEC/MIC found in our study supported this prediction.The lower detection of MBEC and MBEC/MIC values of daptomycin compared to the same values of vancomycin suggested that daptomycin might be effective at lower doses than vancomycin in the treatment of biofilm infections.

Download full-text PDF

Source
http://dx.doi.org/10.5578/mb.57435DOI Listing

Publication Analysis

Top Keywords

μg/ml ca++
16
vancomycin daptomycin
12
biofilm formation
12
mic values
12
values vancomycin
12
mbec mbec/mic
12
daptomycin
11
biofilm
8
coagulase-negative staphylococci
8
staphylococci cns
8

Similar Publications

Tolerance to dietary antigens is critical for avoiding deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens are poorly understood. Here we demonstrate that the goblet-cell-derived resistin-like molecule β (RELMβ) is a critical regulator of oral tolerance.

View Article and Find Full Text PDF

We introduce a quantum-classical generative model for small-molecule design, specifically targeting KRAS inhibitors for cancer therapy. We apply the method to design, select and synthesize 15 proposed molecules that could notably engage with KRAS for cancer therapy, with two holding promise for future development as inhibitors. This work showcases the potential of quantum computing to generate experimentally validated hits that compare favorably against classical models.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Objectives: To evaluate the clinical effectiveness and safety of a perioperative algorithm for cardiac output-guided haemodynamic therapy in patients undergoing major gastrointestinal surgery.

Design: Multicentre randomised controlled trial.

Setting: Surgical services of 55 hospitals worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!