Fluoropyrimidines are frequently used anti-cancer drugs. It is known that patients with reduced activity of dihydropyrimidine dehydrogenase (DPD), the key metabolic enzyme in fluoropyrimidine inactivation, are at increased risk of developing severe fluoropyrimidine-related toxicity. Upfront screening for DPD deficiency and dose reduction in patients with partial DPD deficiency is recommended and improves patient safety. For patients with complete DPD deficiency, fluoropyrimidine-treatment has generally been discouraged. During routine pretreatment screening, we identified a 59-year-old patient with a sigmoid adenocarcinoma who proved to have a complete DPD deficiency. Genetic analyses showed that this complete absence of DPD activity was likely to be caused by a novel DPYD genotype, consisting of a combination of amplification of exons 17 and 18 of DPYD and heterozygosity for DPYD*2A. Despite absence of DPD activity, the patient was treated with capecitabine-based chemotherapy, but capecitabine dose was drastically reduced to 150 mg once every 5 days (0.8% of original dose). Pharmacokinetic analyses showed that the area under the concentration-time curve (AUC) and half-life of 5-fluorouracil were respectively tenfold and fourfold higher than control values of patients receiving capecitabine 850 mg/m . When extrapolating from the dosing schedule of once every 5 days to twice daily, the AUC of 5-fluorouracil was comparable to controls. Treatment was tolerated well for eight cycles by the patient without occurrence of capecitabine-related toxicity. This case report demonstrates that a more comprehensive genotyping and phenotyping approach, combined with pharmacokinetically-guided dose administration, enables save fluoropyrimidine-treatment with adequate drug exposure in completely DPD deficient patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.31065DOI Listing

Publication Analysis

Top Keywords

dpd deficiency
16
novel dpyd
8
dpyd genotype
8
dihydropyrimidine dehydrogenase
8
dpd
8
complete dpd
8
absence dpd
8
dpd activity
8
patient
5
deficiency
5

Similar Publications

Pharmacogenomics: DPYD and Prevention of Toxicity.

Clin Oncol (R Coll Radiol)

December 2024

NHS North West Genomic Medicine Service Alliance, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK; The Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK.

In 2020, the introduction of pre-emptive DPYD genotyping prior to the administration of systemic fluoropyrimidine-based chemotherapy represented one of the first widespread pharmacogenetic testing programmes to be applied nationally in the United Kingdom. Pharmacogenetic variants in the DPYD gene found in between 3 and 6% of the population are a recognised cause of primary DPD enzyme deficiency and associated increased risk of severe fluoropyrimidine toxicity [1]. Yet, the availability of testing globally is heterogeneous.

View Article and Find Full Text PDF

Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.

View Article and Find Full Text PDF

Objectives: The use of plasma uracil measurements to detect dihydropyrimidine dehydrogenase (DPD) deficiency is one of the methods for preventing toxicities associated with fluoropyrimidines, including 5-Fluorouracil (5-FU). Unfortunately, this measurement is subject to variations, that may lead to unnecessary dosage reductions and therefore to a reduced efficacy of treatment. Recently, new factors such as hepatic and renal impairment have been proposed as also influencing uracil concentration.

View Article and Find Full Text PDF

Rapid biomonitoring of fluoropyrimidine-based chemotherapy drugs and their biometabolites in colorectal cancer patients' blood samples using an in-syringe-based fast drug extraction technique followed by LC-MS/MS analysis.

J Chromatogr A

December 2024

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Research Center for Precision Environmental Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; PhD Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung, City-807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan. Electronic address:

Patients with dihydropyrimidine dehydrogenase (DPD) deficiency in peripheral mononuclear cells are at higher risk of severe toxicity due to the improper dose of fluorouracil-based chemotherapy drugs, which has become an essential aspect for consideration in clinical studies. 5-fluorouracil (5-FU) is a first-line and second-line chemotherapy drug in adjuvant, neoadjuvant, or palliative therapy settings to treat solid tumors and cancers. In this work, a novel in-syringe-based fast drug extraction (IS-FaDEx) technique followed by UHPLC-MS/MS detection was developed for rapid biomonitoring of 5-FU and its biometabolites in human blood samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!