As an important cultivation practice used for flue-cured tobacco, topping affects diverse biological processes in the later stages of development and growth. Some studies have focused on using tobacco genes to reflect the physiological changes caused by topping. However, the complex metabolic shifts in the leaf resulting from topping have not yet been investigated in detail. In this study, a comprehensive metabolic profile of primary, secondary, and lipid metabolism in flue-cured tobacco leaf was generated with use of a multiple platform consisting of gas chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and liquid chromatography-mass spectrometry/ultraviolet spectroscopy. A total of 367 metabolites were identified and determined. Both principal component analysis and the number of significantly different metabolites indicated that topping had the greatest influence on the upper leaves. During the early stage of topping, great lipid level variations in the upper leaves were observed, and antioxidant defense metabolites were accumulated. This indicated that the topping activated lipid turnover and the antioxidant defense system. At the mature stage, lower levels of senescence-related metabolites and higher levels of secondary metabolites were found in the topped mature leaves. This implied that topping delayed leaf senescence and promoted secondary metabolite accumulation. This study provides a global view of the metabolic perturbation in response to topping. Graphical abstract Metabolic alterations in tobacco leaf in response to topping using a multiplatform metabolomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-017-0596-z | DOI Listing |
Nanoscale
January 2025
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
Anodes play an important role in lithium-ion batteries (LIBs) and have received much attention as ideal carbon anode materials for meeting the needs for high-rate capability, long-term stability, and high energy density. In this study, a π-extended oligo(perylene) diimide (PTN) is synthesized by using a solvothermal reaction with NH·HO as the decarboxylation reaction catalyst and perylene anhydride as the precursor. A nanocarbon fiber framework can be produced through self-assembly during the carbonization process of π-extended perylene diimide oligomers.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China.
Tomato yellow leaf curl virus (TYLCV) is a significant threat to tomato cultivation globally, transmitted exclusively by the whitefly Bemisia tabaci. While previous research suggests that the TYLCV C2 protein plays a role in fostering mutualistic interactions between the virus and its insect vectors, the specific mechanisms remain unclear. In this study, we show that the C2 protein interferes with the salicylic acid (SA) defence pathway by disrupting TCP7-like transcription factor-mediated regulation of TGA2 expression.
View Article and Find Full Text PDFAnal Chem
January 2025
Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu 610066, People's Republic of China.
This study developed a portable arc iKnife ionization mass spectrometry (AII-MS) technique integrating a surgical knife with low-temperature arc plasma to interact with plant tissues. The thermal energy from the arc plasma induces the sputtering of water-containing plant tissues, leading to the formation of aerosols. These aerosols are then charged by plasma-generated ions, producing charged microdroplets that are ultimately detected by a mass spectrometer.
View Article and Find Full Text PDFPlant J
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively.
View Article and Find Full Text PDFFront Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!