Fish Ontology framework for taxonomy-based fish recognition.

PeerJ

Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.

Published: September 2017

Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602685PMC
http://dx.doi.org/10.7717/peerj.3811DOI Listing

Publication Analysis

Top Keywords

automated classification
12
fish
11
fish ontology
8
fish species
8
ontology framework
4
framework taxonomy-based
4
taxonomy-based fish
4
fish recognition
4
recognition life
4
life science
4

Similar Publications

The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.

View Article and Find Full Text PDF

Background/purpose: In this study, we utilized magnetic resonance imaging data of the temporomandibular joint, collected from the Division of Oral and Maxillofacial Surgery at Taipei Veterans General Hospital. Our research focuses on the classification and severity analysis of temporomandibular joint disease using convolutional neural networks.

Materials And Methods: In gray-scale image series, the most critical features often lie within the articular disc cartilage, situated at the junction of the temporal bone and the condyles.

View Article and Find Full Text PDF

Background: Many respiratory diseases such as pneumoconiosis require to close monitor the symptoms such as abnormal respiration and cough. This study introduces an automated, nonintrusive method for detecting cough events in clinical settings using a flexible chest patch with tri-axial acceleration sensors.

Methods: Twenty-five young healthy persons (hereinafter referred to as healthy adults) and twenty-five clinically diagnosed pneumoconiosis patients (hereinafter referred to as patients) participated in the experiment by wearing a flexible chest patch with an embedded ACC sensor.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!