Background: is an obligate intracellular parasite. Apical membrane antigen 1 (AMA1) is the most prominent and well characterized malarial surface antigen that is essential for parasite-host cell invasion, i.e., for sporozoite to invade and replicate within hepatocytes in the liver stage and merozoite to penetrate and replicate within erythrocytes in the blood stage. AMA1 has long served as a potent antimalarial drug target and is a pivotal vaccine candidate. A good understanding of the structure and molecular function of this protein, particularly its involvement in host-cell adhesion and invasion, is of great interest and hence it offers an attractive target for the development of novel therapeutics. The present study aims to heterologous express recombinant AMA1 ectodomain of (rPvAMA1) for the selection of binding peptides.
Methods: The rPvAMA1 protein was heterologous expressed using a tag-free Profinity eXact system and codon optimized BL21-Codon Plus (DE3)-RIL strain and further refolded by dialysis for renaturation. Binding peptides toward refolded rPvAMA1 were panned using a Ph.D.-12 random phage display library.
Results: The rPvAMA1 was successfully expressed and refolded with three phage-displayed dodecapeptides designated as PdV1 (DLTFTVNPLSKA), PdV2 (WHWSWWNPNQLT), and PdV3 (TSVSYINNRHNL) with affinity towards rPvAMA1 identified. All of them exhibited positive binding signal to rPvAMA1 in both direct phage assays, i.e., phage ELISA binding assay and Western blot binding assay.
Discussion: Phage display technology enables the mapping of protein-protein interactions based on a simple principle that a library of phage particles displaying peptides is used and the phage clones that bind to the target protein are selected and identified. The binding sites of each selected peptides toward PvAMA1 (Protein Data Bank, PDB ID: 1W8K) were predicted using CABS-dock web server. In this case, the binding peptides provide a valuable starting point for the development of peptidomimetic as antimalarial antagonists directed at PvAMA1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600724 | PMC |
http://dx.doi.org/10.7717/peerj.3794 | DOI Listing |
PLoS Pathog
December 2024
Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands.
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Ultrasonography, Shenzhen Children's Hospital, Shenzhen, China.
Background: Percutaneous extracorporeal membrane oxygenation (ECMO) is administered to pediatric patients with cardiogenic shock or cardiac arrest. The traditional method uses focal echocardiography to complete the left ventricular measurement. However, echocardiographic determination of the ejection fraction (EF) by manual tracing of the endocardial borders is time consuming and operator dependent.
View Article and Find Full Text PDFGenetics
December 2024
Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming 82071.
Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands.
Immortalized epithelial cell lines and animal models have been used in fundamental and preclinical research to study pulmonary diseases. However valuable, though, these models incompletely recapitulate the human lung, which leads to low predictive outcomes in potential respiratory treatments. Advanced technology and cell culture techniques stimulate the development of improved models that more closely mimic the physiology of the human lung.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States.
Purpose Of Review: The thick ascending limb (TAL) of loop of Henle is essential for NaCl, calcium and magnesium homeostasis, pH balance and for urine concentration. NKCC2 is the main transporter for NaCl reabsorption in the TAL and its regulation is very complex. There have been recent advancements toward understanding how NKCC2 is regulated by protein trafficking, protein-protein interaction, and phosphorylation/dephosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!