The present study aimed to explore the mechanisms by which c-Myc is involved in mitotic catastrophe. HeLa-630 is a cell line stably silenced for c-Myc expression that was established in the laboratory of the School of Radiation Medicine and Protection. Multinucleated cells were observed in this line, and gene expression analysis was utilized to examine differences in gene expression in these cells compared with in the control cells transfected with the control plasmid. Gene ontology analysis was performed for differentially expressed genes. Expression profile analyses revealed that cells with silenced c-Myc exhibited abnormal expression patterns of genes involved in various functions, including the regulation of microtubule nucleation, centrosome duplication, the formation of pericentriolar material, DNA synthesis and metabolism, protein metabolism and the regulation of ion concentrations. Pathway analyses of differentially expressed genes demonstrated that these genes were primarily involved in diverse signal transduction pathways, including not only the adherens junction pathway, the transforming growth factor-β signaling pathway and the Wnt signaling pathway, among others, but also signaling pathways with roles in cytokine and immune regulation. The proportion of multinucleated cells with multipolar spindles was significantly higher in silenced c-Myc cells as compared with the control cells, and this discrepancy became more pronounced following cell irradiation. The inhibition of c-Myc in tumors may account for the radiosensitization of certain tumor cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588452 | PMC |
http://dx.doi.org/10.3892/ol.2017.6554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!