Surface colonization by microorganisms leads to the formation of biofilms, i.e. aggregates of bacteria embedded within a matrix of extracellular polymeric substance. This promotes adhesion to the surface and protects bacterial community, providing an antimicrobial-resistant environment. The inhibition of biofilm growth is a crucial issue for preventing bacterial infections. Inorganic nanoparticle/Teflon-like (CF) composites deposited via ion beam sputtering demonstrated very efficient antimicrobial activity. In this study, we developed Ag-CF thin films with tuneable metal loadings and exceptional in-plane morphological and chemical homogeneity. Ag-CF antimicrobial activity was studied via mid-infrared attenuated total reflection spectroscopy utilizing specifically adapted multi-reflection waveguides. Biofilm was sampled by carefully depositing the Ag-CF film on IR inactive regions of the waveguide. Real-time infrared spectroscopy was used to monitor Pseudomonas fluorescens biofilm growth inhibition induced by the bioactive silver ions released from the nanoantimicrobial coating. Few hours of Ag-CF action were sufficient to affect significantly biofilm growth. These findings were corroborated by atomic force microscopy (AFM) studies on living bacteria exposed to the same nanoantimicrobial. Morphological analyses showed a severe bacterial stress, leading to membrane leakage/collapse or to extended cell lysis as a function of incubation time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605679PMC
http://dx.doi.org/10.1038/s41598-017-12088-xDOI Listing

Publication Analysis

Top Keywords

biofilm growth
12
antimicrobial activity
8
inhibiting fluorescens
4
fluorescens biofilms
4
biofilms fluoropolymer-embedded
4
fluoropolymer-embedded silver
4
silver nanoparticles
4
nanoparticles in-situ
4
in-situ spectroscopic
4
spectroscopic study
4

Similar Publications

Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.

Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.

View Article and Find Full Text PDF

Surfactin is a biosurfactant produced by many strains with a wide variety of functions from lowering surface tension to allowing motility of bacterial swarms, acting as a signaling molecule, and even exhibiting antimicrobial activities. However, the impact of surfactin during biofilm formation has been debated with variable findings between studies depending on the experimental conditions. B.

View Article and Find Full Text PDF

Innovative packaging materials are essential for preserving food, serving as a substitute for petroleum-based options. In this study, biofilms consisting of pullulan and gellan gum which incorporates astaxanthin nanoemulsion were prepared to extend the shelf-life of strawberries. Hydrophobic deep eutectic solvents (DES) were used as solvents to extract natural astaxanthin from Haematococcus pluvialis.

View Article and Find Full Text PDF

Prevention and control strategies for psychrophilic Pseudomonas fluorescens in food: A review.

Food Res Int

February 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China. Electronic address:

Psychrophilic Pseudomonas fluorescens can secrete extracellular enzymes, biofilms, and other substances even under refrigeration conditions, which have a negative impact on the quality of dairy products, aquatic products, meat products, produce, and other foods, causing food spoilage and huge economic losses. Therefore, strengthening the prevention and control of psychrophilic P. fluorescens in food is of great significance.

View Article and Find Full Text PDF

Biological semi-passive mine water treatment technologies are used in the mining industry as an alternative to or in conjunction with active treatment systems to remediate mine impacted water (MIW) containing nitrate and selenium oxyanions such as selenate and selenite. In semi-passive biological treatment systems, MIW is pumped through a saturated, porous media (either a gravel bed or waste rock) which provides ample surface area for biofilm growth and the creation of anoxic, subaqueous environments. Additional nutrients and carbon sources are pumped into the system to encourage the growth of microbes that biochemically reduce selenate and selenite to insoluble reduced Se species such as selenium nanoparticles (SeNP) by respiring selenate and selenite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!