The enigma of embryonic diapause.

Development

The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H8L6.

Published: September 2017

Embryonic diapause - a period of embryonic suspension at the blastocyst stage - is a fascinating phenomenon that occurs in over 130 species of mammals, ranging from bears and badgers to mice and marsupials. It might even occur in humans. During diapause, there is minimal cell division and greatly reduced metabolism, and development is put on hold. Yet there are no ill effects for the pregnancy when it eventually continues. Multiple factors can induce diapause, including seasonal supplies of food, temperature, photoperiod and lactation. The successful reactivation and continuation of pregnancy then requires a viable embryo, a receptive uterus and effective molecular communication between the two. But how do the blastocysts survive and remain viable during this period of time, which can be up to a year in some cases? And what are the signals that bring it out of suspended animation? Here, we provide an overview of the process of diapause and address these questions, focussing on recent molecular data.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.148213DOI Listing

Publication Analysis

Top Keywords

embryonic diapause
8
diapause
5
enigma embryonic
4
diapause embryonic
4
diapause period
4
period embryonic
4
embryonic suspension
4
suspension blastocyst
4
blastocyst stage
4
stage fascinating
4

Similar Publications

Persistence and/or Senescence: Not So Lasting at Last?

Cancer Res

January 2025

Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité - Universitätsmedizin, Berlin, Germany.

Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells.

View Article and Find Full Text PDF

Instant and refrigerated acid soaking are commonly used in cocoon production to prevent or break diapause, and provide developable silkworm eggs for sericulture, while their mechanisms have not been fully understood. This study aims to investigate the mechanisms by which hydrochloric acid (HCl) or dimethyl sulfoxide (DMSO) promotes embryonic development in silkworm Bombyx mori, focusing on the chloride ion (Cl) related gene expression profiles. Our results revealed that the HCl treatment of up to 6 min enhanced hatchability in freshly picked and cold-stored eggs, whereas a slight decrease in hatchability was observed in those treated with DMSO for 40 min.

View Article and Find Full Text PDF

Embryonic dormancy in Aedes aegypti and Aedes albopictus (Diptera: Culicidae): a survival and dispersal mechanism.

J Vector Borne Dis

October 2024

Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Laboratório de Parasitologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil.

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as dengue, Zika virus, and chikungunya. Ae. aegypti is a widely spread mosquito in tropical and subtropical regions, whereas Ae.

View Article and Find Full Text PDF

The embryonic diapause of the giant panda (Ailuropoda melanoleuca) has caused great difficulties in monitoring pregnancy in this vulnerable species. The secretion of prolactin (PRL) from anterior pituitary glandular lactotropic cells is an important signal for the termination of embryonic dormancy. Currently, the mechanism by which PRL affects embryonic diapause in giant pandas and methods for detecting PRL in this species are poorly understood.

View Article and Find Full Text PDF

The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!