Many countries in the Americas have detected local transmission of multiple arboviruses that cause febrile illnesses. Therefore, laboratory testing has become an important tool for confirming the etiology of these diseases. The present study aimed to compare the sensitivity and specificity of three different Zika virus detection assays. One hundred serum samples from patients presenting with acute febrile symptoms were tested using a previously reported TaqMan RT-qPCR assay. We used a SYBR Green RT-qPCR and a conventional PCR methodologies to compare the results. Of the samples that were determined to be negative by the TaqMan RT-qPCR assay, 100% (Kappa=0.670) were also found to be negative by SYBR Green RT-qPCR based on Tm comparison; however, 14% (Kappa=0.035) were found to be positive by conventional PCR followed by agarose gel electrophoresis. The differences between the ZIKV strains circulating worldwide and the low viremia period can compromise diagnostic accuracy and thereby the accuracy of outbreak data. Therefore, improved assays are required to improve the diagnosis and surveillance of arbovirus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790641 | PMC |
http://dx.doi.org/10.1016/j.bjm.2017.04.011 | DOI Listing |
Vet Sci
January 2025
College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China.
To establish a rapid and sensitive detection method for the porcine reproductive and respiratory syndrome virus (PRRSV), gene-specific primers and a TaqMan probe were designed based on the gene of PRRSV, and a new stable fully pre-mixed reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) reaction mixture was developed. A simple and rapid RT-qPCR detection method for PRRSV was developed by optimizing nucleic acid amplification conditions. The results showed that the method was able to specifically detect PRRSV without cross-reactivity with the other 11 porcine susceptible viruses.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland.
Pancreatic cancer (PC) is the seventh most common cause of cancer-related death worldwide. The low survival rate may be due to late diagnosis and asymptomatic early-stage disease. Most patients are diagnosed at an advanced stage of the disease.
View Article and Find Full Text PDFMalays J Med Sci
December 2024
Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia.
Background: Respiratory syncytial virus (RSV) is a common aetiological agent that causes respiratory infections, especially among infants. Identifying circulating RSV genotypes is an essential strategy for understanding the spread of the virus in a certain area. Sequencing the variable regions of the attachment glycoprotein (G) gene of RSV is a quick and direct approach for identifying the genotypes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!