MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia.

Life Sci

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.

Published: November 2017

Aims: Severe hypoxia always inhibits the cell proliferation, osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and hinders bone defect repair. Herein we explored the effects of mechano-growth factor (MGF) E peptide on the proliferation and osteogenic differentiation of BMSCs under severe hypoxia.

Materials And Methods: CoCl was utilized to simulate severe hypoxia. MTS was used to detect cell viability. Cell proliferation was verified through flow cytometry and EdU assay. Osteogenic differentiation of BMSCs and osteoblast-specific genes were detected through alkaline phosphatase (ALP) and Alizarin Red S staining, and quantitative real-time PCR, respectively. Hypoxia-inducible factor 1α (HIF-1α), p-ERK1/2 and p-Akt expression levels were detected through western blotting and immunofluorescence.

Key Findings: Severe hypoxia induced HIF-1α accumulation and transferring into the nucleus, and reduced cell proliferation and osteogenic differentiation of BMSCs. The expression levels of osteoblast-specific genes were markedly decreased after differentiation culture for 0, 7 or 14days. Fortunately, MGF E peptide inhibited HIF-1α expression and transferring into the nucleus. Cell proliferation and osteogenic differentiation of BMSCs could be recovered by MGF E peptide pretreatment. MEK-ERK1/2 and PI3K-Akt signaling pathway were confirmed to be involved in MGF E peptide regulating the abovementioned indexes of BMSCs. What's more, short-time treatment with MGF E peptide alone promoted the osteogenic differentiation of BMSCs as well.

Significance: Our study provides new evidence for the role of MGF E peptide in regulating proliferation and osteogenic differentiation of BMSCs under severe hypoxia, which may potentially have therapeutic implication for bone defect repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2017.09.017DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
32
mgf peptide
28
differentiation bmscs
28
proliferation osteogenic
24
severe hypoxia
20
cell proliferation
16
differentiation
9
bmscs
9
peptide pretreatment
8
osteogenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!