In this work, a flexible and porous WO/grapheme/polyester (WO/G/PT) textile electrode was successfully prepared by in situ growing WO on the fiber surface inside G/PT composite fabrics. The unique electrode structure facilitates to enhance the energy storage performance because the 3D conductive network constructed by the G/PT increase the electron transportation rate, nanotructured WO exposed enhanced electrochemically active surface area and the hierarchically porous structure improved the electrolyte ion diffusion rate. The optimized WO/G/PT textile electrode exhibited good electrochemical performance with a high areal capacitance of 308.2mFcm at a scan rate of 2mVs and excellent cycling stability. A flexible asymmetric supercapacitor (ASC) device was further fabricated by using the WO/G/PT electrode and G/PT electrode, which exhibited a good specific capacitance of 167.6mFcm and high energy density of 60μWhcm at the power density of 2320 μWcm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2017.08.103 | DOI Listing |
Biomed Eng Lett
January 2025
Department of Biomedical Engineering, Yonsei University College of Software and Digital Healthcare Convergence, Wonju-si, Gangwon-do 26493 Republic of Korea.
The rise in individuals living alone in ageing societies raises concerns about social isolation and associated health risks, notably lonely deaths among the elderly. Traditional electrocardiogram (ECG) monitoring systems, reliant on intrusive and potentially irritating electrodes, pose practical challenges. This study examines the efficacy of conductive textile electrodes (CTEs) vis-á-vis conventional electrodes (CEs) in ECG monitoring, along with the effect of electrode positioning.
View Article and Find Full Text PDFSmall
January 2025
School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China.
1D moisture-enabled electric generators (MEGs) hold great promise for powering electronic textiles, but their current limitations in power output and operational duration restrict their application in wearable technology. This study introduces a high-performance yarn-based moisture-enabled electric generator (YMEG), which comprises a carbon-fiber core, a cotton yarn active layer with a radial gradient of poly(4-styrensulfonic acid) and poly(vinyl alcohol) (PSSA/PVA), and an aluminum wire as the outer electrode. The unique design maintains a persistent moisture gradient between the interior and exterior electrodes, enhancing performance through the continuous proton diffusion from PSSA and Al⁺ ions from the aluminum wire.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.
Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
ACS Omega
December 2024
Ege University Solar Energy Institute, 35040 Bornova, Izmir, Turkey.
Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!