Event-related Desynchronization of Mu Rhythms During Concentric and Eccentric Contractions.

J Mot Behav

b Department of Physical Therapy , College of Health Science, Yonsei University, Wonju , Republic of Korea.

Published: October 2019

The purpose of this study was to compare the electroencephalographic (EEG) patterns and reaction times (RTs) of muscle activation between concentric and eccentric biceps brachii contractions under the RT paradigm and to evaluate how the EEG patterns and RTs changed with practice. Sixteen subjects performed 3 sets of 30 repetitions of submaximal voluntary concentric and eccentric biceps contractions. RT, event-related desynchronization (ERD) patterns of mu rhythm onset, and ERD amplitudes were selectively analyzed. Mental demand decreased as familiarity with the motor action increased due to practice regardless of contraction type. However, the 2 types of muscle contractions still have differences in brain activity regardless of decreased mental demand: eccentric contractions require earlier preparation than concentric contractions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00222895.2017.1367638DOI Listing

Publication Analysis

Top Keywords

concentric eccentric
12
event-related desynchronization
8
eccentric contractions
8
eeg patterns
8
eccentric biceps
8
mental demand
8
contractions
6
desynchronization rhythms
4
concentric
4
rhythms concentric
4

Similar Publications

Background: Long-term exercise training induces various morphological adaptations in the heart. Although concentric left ventricular (LV) geometry is occasionally observed in young athletes, its clinical significance is unclear. This study aimed to investigate the characteristics of young rugby athletes with concentric LV geometry and considered its clinical implications.

View Article and Find Full Text PDF

The Effect of Protein Supplementation and Playing Time on Recovery Kinetics During a Congested Basketball Schedule.

Nutrients

December 2024

Department of Physical Education and Sport Science, School of Physical Education, Sport Science and Occupational Therapy, Democritus University of Thrace, 69100 Komotini, Greece.

Background/objectives: Despite being widely promoted, protein supplementation's overall effectiveness during demanding basketball schedules remains unclear. This study investigated whether increased protein intake can accelerate recovery of muscle function during a 6-day congested basketball microcycle consisting of three consecutive games while accounting for the impact of playing time.

Methods: In a randomized, two-trial, cross-over, double-blind repeated measures design, eighteen male basketball players were assigned to a high (High PT) or a moderate (Mod PT) playing time group and participated in two trials, receiving daily either milk protein (PRO trial) or an isoenergetic amount of carbohydrates.

View Article and Find Full Text PDF

Subject-specific biomechanics influences tendon strains in patients with Achilles tendinopathy.

Sci Rep

January 2025

Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

The treatment of Achilles tendinopathy is challenging, as 40% of patients do not respond to existing rehabilitation protocols. These protocols neglect individual Achilles tendon (AT) characteristics, which are crucial for healing of the tendon tissue. Although prior studies suggest an optimal strain for AT regeneration (6% tendon strains), it is unclear if current protocols meet this condition.

View Article and Find Full Text PDF

Persisting deficits are often seen years after an Achilles tendon rupture despite dedicated rehabilitation efforts. A possible reason for reduced function is elongation of the tendon and accompanying shortening of the muscle. Strength training with focus on the eccentric component of loading leads to longer muscle fascicles in healthy persons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!