We demonstrated a monolithic GaN-InGaN core-shell nanorod lattice lasing under room temperature. The threshold pumping density was as low as 140 kW/cm with a quality factor as high as 1940. The narrow mode spacing between lasing peaks suggested a strong coupling between adjacent whisper gallery modes (WGM), which was confirmed with the far-field patterns. Excitation area dependent photoluminescence revealed that the long-wavelength lasing modes dominated the collective lasing behavior under a large excitation area. The excitation-area-dependent lasing behavior resulted from the prominent optical coupling among rods. According to the optical mode simulations and truncated-rod experiments, we confirmed that the fine-splitting of lasing peaks originated from the coupled supermodes existing in the periodic nanorod lattices. With wavelength-tunable active materials and a wafer-level scalable processing, patterning optically coupled GaN-InGaN core-shell nanorods is a highly practical approach for building various on-chip optical components including emitters and coupled resonator waveguides in visible and ultraviolet spectral range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b02922 | DOI Listing |
J Phys Chem Lett
December 2024
State Key Laboratory of Superhard Materials & College of Physics, Jilin University, Changchun 130012, China.
This study aims to achieve an ultralow lasing threshold in CsPbBr microplates (MPs), a crucial step toward developing electrically driven micro/nanolasers for optics integrated chips. We investigate the lasing behavior of CsPbBr MPs under varying pressures by using static-state photoluminescence (PL), time-resolved PL (TRPL), and first-principles theory calculations based on density functional theory (DFT). Our results reveal that the lasing threshold initially decreases and then increases, with a critical turning point at 0.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Center for Wireless Integrated MicroSensing and Systems (WIMS(2)), University of Michigan, Ann Arbor, MI, 48109, USA; Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:
Circulating tumor cells (CTCs) in the bloodstream are important biomarkers for clinical prognosis of cancers. Current CTC identification methods are based on immuno-labeling, which depends on the differential expression of specific antigens between the cancer cells and white blood cells. Here we present an antigen-independent CTC detection method utilizing a deep-learning-assisted single-cell biolaser.
View Article and Find Full Text PDFACS Photonics
November 2024
Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States.
Harmonic and subharmonic RF injection locking is demonstrated in a terahertz (THz) quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL). By tuning the RF injection frequency around integer multiples and submultiples of the cavity round-trip frequency, different harmonic and subharmonic orders can be excited in the same device. Modulation-dependent behavior of the device has been studied with recorded lasing spectral broadening and locking bandwidths in each case.
View Article and Find Full Text PDFMultiple gain routes complicate the amplification behaviors of N2+ lasing. A direct comparison of the amplification processes of various lasing lines of N2+ is still lacking to date, mainly because the efficient generation of different lasing lines requires different experimental conditions. In this work, to overcome the limitation, we use an intense polarization-modulated femtosecond laser pulse to simultaneously produce high-intensity N2+ lasing signals at 391 nm and 428 nm, permitting us readily performing their time-domain characterizations.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Shandong Provincial Engineering and Technical Center of Light Manipulation & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!