Large infected bone defects, often resulting from high energy traumas, are difficult to treat due to their variability in complexity and location. Standard treatment for infected bone defects begins with a protocol that includes a series of debridements in conjunction with an extended course of systemic antibiotics. Only after the infection has been eliminated will repair of the defect commence, typically with implantation of autologous bone. To address some of the shortcomings of the standard treatment methods, such as serial procedures, limited grafting material, and the need for a second surgical site for autologous bone, a sequential, dual drug-releasing, moldable, calcium sulfate-based bone graft substitute was developed previously. In the present studies, the effectiveness of the material for treating both the infection with vancomycin and bone defect with simvastatin was evaluated in vivo using a critically sized, infected segmental defect model in rat femurs. Although the infection was not fully eliminated, the local release of vancomycin increased survivorship of infected animals by 464% compared to nontreated controls. Infected animals receiving antimicrobial treatment showed comparable amounts of new bone formation within the defect site when compared to noninfected controls. Incorporating agents capable of disrupting established biofilms into bone graft substitutes may enhance effectiveness in treating a biofilm infection within a bone defect. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1878-1886, 2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.34001 | DOI Listing |
Stem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFObjectives: To describe operative results after humerus nonunion surgery in patients whose initial humerus shaft fracture (OTA/AO code 12) was treated nonoperatively and to identify risk factors of nonunion surgery failure in the same population.
Design: Case series.
Setting: Nine academic level 1 trauma centers.
JPRAS Open
March 2025
Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan.
A vascularized free fibula flap is often used to reconstruct bone defects. However, bone resorption within the osteotomized segment is often observed. This may be attributed to damage to bone blood flow supplied by nonpenetrating periosteal vessels (NPPVs); however, there are few studies on NPPVs in the fibula.
View Article and Find Full Text PDFUnlabelled: The increased rate of anterior cruciate ligament (ACL) tears has led to a greater number of revisions. Revision surgery can be performed in one or two stages. Single-stage revision ACL reconstruction (ssRACLR) may be performed when prior tunnels can be re-used or bypassed whereas a two-stage procedure is indicated when bone grafting of dilated tunnels prior to revision is necessary.
View Article and Find Full Text PDFJ Spine Surg
December 2024
Department of Neurosurgery, Geisinger Neuroscience Institute, Danville, PA, USA.
Anterior lumbar interbody fusion (ALIF) is an anterior surgical approach for interbody fusion in the lumbar spine which affords the surgeon unfettered access to the disc space and allows for release of the anterior longitudinal ligament and insertion of a large, lordotic interbody graft. Despite the benefits associated with ALIF when compared with other lumbar interbody fusion techniques, the ALIF approach is associated with a number of unique complications, and certain patient-specific criteria (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!