The public cancer radiology imaging collections of The Cancer Imaging Archive.

Sci Data

Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research, Frederick, Maryland 20892, USA.

Published: September 2017

The Cancer Imaging Archive (TCIA) is the U.S. National Cancer Institute's repository for cancer imaging and related information. TCIA contains 30.9 million radiology images representing data collected from approximately 37,568 subjects. This data is organized into collections by tumor-type with many collections also including analytic results or clinical data. TCIA staff carefully de-identify and curate all incoming collections prior to making the information available via web browser or programmatic interfaces. Each published collection within TCIA is assigned a Digital Object Identifier that references the collection. Additionally, researchers who use TCIA data may publish the subset of information used in their analysis by requesting a TCIA generated Digital Object Identifier. This data descriptor is a review of a selected subset of existing publicly available TCIA collections. It outlines the curation and publication methods employed by TCIA and makes available 15 collections of cancer imaging data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827108PMC
http://dx.doi.org/10.1038/sdata.2017.124DOI Listing

Publication Analysis

Top Keywords

cancer imaging
16
collections cancer
8
imaging archive
8
tcia
8
digital object
8
object identifier
8
tcia collections
8
collections
6
data
6
imaging
5

Similar Publications

Optimized Synthetic Correlated Diffusion Imaging for Improving Breast Cancer Tumor Delineation.

Sensors (Basel)

December 2024

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumor identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumor characteristics and disease. Recently, a new imaging modality named synthetic correlated diffusion imaging (CDI) has been showing promise for enhanced prostate cancer delineation when compared to existing MRI imaging modalities.

View Article and Find Full Text PDF

MR Elastography Using the Gravitational Transducer.

Sensors (Basel)

December 2024

Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK.

MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity.

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Background: Muscle quality and mass in cancer patients have prognostic and diagnostic importance.

Objectives: The objectives are to analyze agreement between gold-standard and bedside techniques for morphofunctional assessment.

Methods: This cross-sectional study included 156 consecutive colorectal cancer outpatients that underwent computed tomography (CT) scanning at lumbar level 3 (L3), whole-body bioelectrical impedance analysis (BIA), point-of-care nutritional ultrasound (US), anthropometry, and handgrip strength in the same day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!