Adipose Triglyceride Lipase Regulation: An Overview.

Curr Protein Pept Sci

Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, A-8010 Graz, Austria.

Published: October 2018

Adipose triglyceride lipase (ATGL) is the key-enzyme for the release of fatty acids (FAs) from triacylglycerol (TG) stores during intracellular lipolysis producing FAs used for energy production. There is growing evidence that the products and intermediates from lipolytic breakdown during the FA mobilization process also have fundamental regulatory functions affecting cell signaling, gene expression, metabolism, cell growth, cell death, and lipotoxicity. Regulation of ATGL is therefore vital for maintaining a defined balance between lipid storage and mobilization. This review addresses the regulation of ATGL activity at the post-translational level with special emphasis on protein-mediated interaction at the site of hydrolytic action, namely to the lipid droplet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613786PMC
http://dx.doi.org/10.2174/1389203718666170918160110DOI Listing

Publication Analysis

Top Keywords

adipose triglyceride
8
triglyceride lipase
8
regulation atgl
8
lipase regulation
4
regulation overview
4
overview adipose
4
lipase atgl
4
atgl key-enzyme
4
key-enzyme release
4
release fatty
4

Similar Publications

Sleep tests commonly diagnose sleep disorders, but the diverse sleep-related biomarkers recorded by such tests can also provide broader health insights. In this study, we leveraged the uniquely comprehensive data from the Human Phenotype Project cohort, which includes 448 sleep characteristics collected from 16,812 nights of home sleep apnea test monitoring in 6,366 adults (3,043 male and 3,323 female participants), to study associations between sleep traits and body characteristics across 16 body systems. In this analysis, which identified thousands of significant associations, visceral adipose tissue (VAT) was the body characteristic that was most strongly correlated with the peripheral apnea-hypopnea index, as adjusted by sex, age and body mass index (BMI).

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) with onset in youth may be more consequential for adverse outcomes than that detected later in adulthood. Transaminitis in the general population is a marker of the prevalence of MASLD. There are no previous community-based studies in Indian youth assessing the prevalence of transaminitis.

View Article and Find Full Text PDF

Introduction There are controversies about whether women with polycystic ovary syndrome (PCOS) show a disproportionately higher visceral adiposity, and its relevance to their higher cardiometabolic risks. We investigated in women of Asian Indian descent in Mauritius, a population inherently prone to abdominal obesity, whether those with PCOS will show a more adverse cardiometabolic risk profile that could be explained by abnormalities in fat distribution. Methods Young women newly diagnosed with PCOS (n=25) were compared with a reference control cohort (n =139) for the following measurements made after an overnight fast: body mass index (BMI), waist circumference (WC), body composition by dual-energy x-ray absorptiometry, blood pressure and blood assays for glycemic (glucose, HbA1c, insulin) and lipid (triglycerides, cholesterols) profiles.

View Article and Find Full Text PDF

In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!