Three-dimentional (3D) multicellular aggregates (spheroids), compared to the traditional 2D monolayer cultured cells, are physiologically more similar to the cells in vivo. So far there are various techniques to generate 3D spheroids. Spheroids obtained from different methods have already been applied to regenerative medicine or cancer research. Among the cell spheroids created by different methods, the substrate-derived spheroids and their forming mechanism are unique. This review focuses on the formation of biomaterial substrate-mediated multicellular spheroids and their applications in tissue engineering and tumor models. First, the authors will describe the special chitosan substrate-derived mesenchymal stem cell (MSC) spheroids and their greater regenerative capacities in various tissues. Second, the authors will describe tumor spheroids derived on chitosan and hyaluronan substrates, which serve as a simple in vitro platform to study 3D tumor models or to perform cancer drug screening. Finally, the authors will mention the self-assembly process for substrate-derived multiple cell spheroids (co-spheroids), which may recapitulate the heterotypic cell-cell interaction for co-cultured cells or crosstalk between different types of cells. These unique multicellular mono-spheroids or co-spheroids represent a category of 3D cell culture with advantages of biomimetic cell-cell interaction, better functionalities, and imaging possibilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201700064 | DOI Listing |
ACS Food Sci Technol
January 2025
Department of Food Technology, Engineering and Science, Universitat de Lleida - Agrotecnio CeRCA Center, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
Enzyme catalysis is important in food processing, such as in baking, dairy, and fiber processing and beverages. A recent advancement in catalysis is the development of Pickering emulsions as enzymatic catalytic systems; however, the use of Pickering emulsions (PEs) as catalytic systems in foods remains largely underdeveloped. Challenges exist that inhibit the widespread adoption of PEs as catalytic systems in foods.
View Article and Find Full Text PDFNanophotonics
January 2025
MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai 200092, China.
The formed optical cavity mode intensively relies on the size and geometry of optical cavity. When the defect or impurity exists inside the cavity, the formed cavity mode will be destroyed. Here, we propose a metacavity consisting of arrays of linear-crossing metamaterials (LCMMs) with abnormal dispersion, where each LCMM offers both the directional propagation channel for all incident angles and the negative refraction across its neighboring LCMMs.
View Article and Find Full Text PDFNanophotonics
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China.
As the source of data acquisition, sensors provide basic data support for crop planting decision management and play a foundational role in developing smart planting. Accurate, stable, and deployable on-site sensors make intelligent monitoring of various planting scenarios possible. Recent breakthroughs in plant advanced sensors and the rapid development of intelligent manufacturing and artificial intelligence (AI) have driven sensors towards miniaturization, intelligence, and multi-modality.
View Article and Find Full Text PDFFront Plant Sci
January 2025
China Eco-city Academy Co., Ltd., Tianjin, China.
The establishment of conservation areas is an important strategy for endangered species conservation. In this study, we investigated the distributions of suitable habitat areas for three level 1 endangered Cupressaceae plants (, , and ) in China and used the Marxan model to delineate the priority conservation areas for each species. The results showed that had the broadest suitable growing area under the current climate in China and is followed by , with an area of 91 × 10 km, and had the smallest suitable habitat areas at only 7 × 10 km.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!