Stereoselective delivery and actions of beta receptor antagonists.

Biochem Pharmacol

Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425-2251.

Published: January 1988

These studies have revealed that the delivery and actions of beta receptor antagonist drugs are controlled by a cascade of stereoselective processes involving multiple enzymes, transport proteins and receptors. In essence, the free concentration of the pharmacologically active (-)-enantiomer species of these drugs presented to cell surface beta receptors appears to be a function of the stereoselective clearance by hepatic cytochrome P-450 isoenzymes, enantiomer selective binding to alpha 1-acid glycoprotein and albumin and perhaps predominantly by stereoselective sequestration (and release) by the vesicular amine transport protein within adrenergic neurons. Stereoselectivity in the clearance of beta blocking drugs, which can favor either the (+)- or (-)-enantiomer, only appears to be important for the lipophilic drugs which are cleared by hepatic metabolism. Such stereoselectivity is due to differential stereochemical substrate requirements of individual hepatic cytochrome P-450 isoenzymes. Interindividual variations in the stereoselectivity can occur as a result of differences in the amount and expression of cytochrome P-450 isoenzymes due to genetic predisposition or other factors. In the same context, we have observed a significant correlation between the extent and stereoselectivity of binding of beta blocking drugs to plasma proteins. This is another finding which suggests that variability in the expression of individual proteins involved in the beta blocking drug-protein cascade determines the free concentration of the pharmacologically active enantiomer. However, since most observations have been made in young normal subjects, the extent of stereoselectivity in metabolism, binding and other processes is unknown in the general population where steady-state plasma concentrations can vary widely due to multiple biological factors. The observations from neural studies support the concept that adrenergic nerve endings provide a depot for the stereoselective storage and release of the active enantiomer of beta receptor antagonists. The mechanism of this release appears to involve exocytotic secretion of drug that has been stereoselectively accumulated by the neurotransmitter storage vesicles. In terms of this idea, beta receptor antagonists released during nerve stimulation may achieve concentrations of the (-)-enantiomer within the adrenergic synapse greatly in excess of those found in plasma. Such a mechanism could significantly influence both the intensity and duration of beta receptor blockade in the heart, blood vessels, brain and other target tissues.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(88)90763-0DOI Listing

Publication Analysis

Top Keywords

beta receptor
20
receptor antagonists
12
cytochrome p-450
12
p-450 isoenzymes
12
beta blocking
12
beta
9
delivery actions
8
actions beta
8
free concentration
8
concentration pharmacologically
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!