Delhi is one among the highly air polluted cities in the world. Absence of causal relationship between emitting sources of PM and their impact has resulted in inadequate actions. This research combines a set of innovative and state-of-the-art analytical techniques to establish relative predominance of PM sources. Air quality sampling at six sites in summer and winter for 40 days (at each site) showed alarmingly high PM concentrations (340 ± 135 μg/m). The collected PM was subjected to chemical speciation including ions, metals, organic and elemental carbons which followed application of chemical mass balance technique for source apportionment. The source apportionment results showed that secondary aerosols, biomass burning (BMB), vehicles, fugitive dust, coal and fly ash, and municipal solid waste burning were the important sources. It was observed that secondary aerosol and crustal matter accounted for over 50% of mass. The PM levels were not solely result of emissions from Delhi; it is a larger regional problem caused by contiguous urban agglomerations. It was argued that emission reduction of precursors of secondary aerosol, SO, NO, and volatile organic compounds, which are unabated, is essential. A substantial reduction in BMB and suspension of crustal dust is equally important to ensure compliance with air quality standards.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-0171-3DOI Listing

Publication Analysis

Top Keywords

secondary aerosol
12
municipal solid
8
solid waste
8
crustal matter
8
air quality
8
source apportionment
8
characterization delhi
4
delhi role
4
role impact
4
secondary
4

Similar Publications

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Underestimated Industrial Ammonia Emission in China Uncovered by Material Flow Analysis.

Environ Pollut

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:

Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.

View Article and Find Full Text PDF

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).

View Article and Find Full Text PDF

The hydration mechanism of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker of secondary organic aerosol formation from the atmospheric oxidation of α-pinene, has been investigated using the matrix-isolation infrared spectroscopy technique. The experimental results were supported by theoretical calculations. Monomers of MBTCA and heterocomplexes MBTCA-(HO) were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!