Correlative SIM-STORM Microscopy.

Methods Mol Biol

BioImaging and Optics Platform (BIOP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life Sciences (SV), Station 15, 1015, Lausanne, Switzerland.

Published: May 2018

The ability to specifically label subcellular structures or even proteins of interest in combination with the ability to look at live specimens turned fluorescence light microscopy into an invaluable tool. However, conventional light microscopy is diffraction limited, which restricts the lateral resolution to around 200 nm laterally and 600-800 nm axially. In 2014, the Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan W. Hell, and William E. Moerner for the development of super-resolved fluorescent microscopy techniques. Since then, it has become evident that imaging techniques that enable the visualization of structures below the diffraction limit are essential for the field of life sciences. However, each one of these approaches has inherent advantages and limitations. Here, we describe an imaging workflow suitable for combining structured illumination microscopy (SIM) with direct stochastic optical reconstruction microscopy (dSTORM) data. This is invaluable, since it allows us to put highly resolved dSTORM data into its cellular context.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7265-4_8DOI Listing

Publication Analysis

Top Keywords

light microscopy
8
dstorm data
8
microscopy
6
correlative sim-storm
4
sim-storm microscopy
4
microscopy ability
4
ability label
4
label subcellular
4
subcellular structures
4
structures proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!