Plasmodium falciparum causes a spectrum of malarial disease from asymptomatic to uncomplicated through to severe. Investigations of parasite virulence have associated the expression of distinct variants of the major surface antigen of the blood stages known as Pf EMP1 encoded by up to 60 var genes per genome. Looking at the population genomics of var genes in cases of uncomplicated malaria, we set out to determine if there was any evidence of a selective sweep of specific var genes or clonal epidemic structure related to the incidence of uncomplicated disease in children. By sequencing the conserved DBLα domain of var genes from six sentinel sites in Uganda we found that the parasites causing uncomplicated P. falciparum disease in children were highly diverse and that every child had a unique var DBLα repertoire. Despite extensive var DBLα diversity and minimal overlap between repertoires, specific DBLα types and groups were conserved at the population level across Uganda. This pattern was the same regardless of the geographic distance or malaria transmission intensity. These data lead us to propose that any parasite can cause uncomplicated malarial disease and that these diverse parasite repertoires are composed of both upsA and non-upsA var gene groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603532PMC
http://dx.doi.org/10.1038/s41598-017-11814-9DOI Listing

Publication Analysis

Top Keywords

var genes
16
population genomics
8
plasmodium falciparum
8
malarial disease
8
disease children
8
var dblα
8
var
7
genes
5
uncomplicated
5
genomics virulence
4

Similar Publications

is a popular ornamental aquatic plant for aquarists, although only six species are found in China. Destruction of the natural habitats of for human activities has led to a decline in its numbers. In this report, we sequenced and annotated the chloroplast genome for the first time.

View Article and Find Full Text PDF

Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt.

View Article and Find Full Text PDF

Background: The patterns of inbreeding coefficients () and fine spatial genetic structure (FSGS) were evaluated regarding the mating system and inbreeding depression of food-deceptive orchids, , var. , and , from NE Poland.

Methods: We used 455 individuals, representing nine populations of three taxa and AFLPs, to estimate percent polymorphic loci and Nei's gene diversity, which are calculated using the Bayesian method; ; ; FSGS with the pairwise kinship coefficient (); and AMOVA in populations.

View Article and Find Full Text PDF

Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution.

Mol Phylogenet Evol

January 2025

Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China. Electronic address:

Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus Corylus based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within Corylus.

View Article and Find Full Text PDF

Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!