DDK, a conserved serine-threonine protein kinase composed of a regulatory subunit, Dbf4, and a catalytic subunit, Cdc7, is essential for DNA replication initiation during S phase of the cell cycle through MCM2-7 helicase phosphorylation. The biological significance of DDK is well characterized, but the full mechanism of how DDK associates with substrates remains unclear. Cdc7 is bound to chromatin in the genome throughout the cell cycle, but there is little empirical evidence as to specific Cdc7 binding locations. Using biochemical and genetic techniques, this study investigated the specific localization of Cdc7 on chromatin. The Calling Cards method, using Ty5 retrotransposons as a marker for DNA-protein binding, suggests Cdc7 kinase is preferentially bound to genomic DNA known to replicate early in S phase, including centromeres and origins of replication. We also discovered Cdc7 binding throughout the genome, which may be necessary to initiate other cellular processes, including meiotic recombination and translesion synthesis. A kinase dead Cdc7 point mutation increases the Ty5 retrotransposon integration efficiency and a 55-amino acid C-terminal truncation of Cdc7, unable to bind Dbf4, reduces Cdc7 binding suggesting a requirement for Dbf4 to stabilize Cdc7 on chromatin during S phase. Chromatin immunoprecipitation demonstrates that Cdc7 binding near specific origins changes during S phase. Our results suggest a model where Cdc7 is loosely bound to chromatin during G At the G/S transition, Cdc7 binding to chromatin is increased and stabilized, preferentially at sites that may become origins, in order to carry out a variety of cellular processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677158 | PMC |
http://dx.doi.org/10.1534/g3.117.300223 | DOI Listing |
ACS Omega
January 2025
Department of Chemistry-BMC Biochemistry, University of Uppsala, Husargatan 3, Uppsala 75237, Sweden.
In this work, we present the synthesis, solid-state characterization, and studies of two pyrazole derivatives: 5-(2-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (I) and 5-(4-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (II). The molecular crystal properties, in terms of intermolecular hydrogen bonds and other weak interactions, are analyzed using single crystal X-ray diffraction. The Hirshfeld surfaces computational method is used to quantify the intermolecular interactions, density functional theory for theoretical structural optimization, and its comparison with the experimental structure and studies using docking and molecular dynamics studies of I and II with CDC7-kinase.
View Article and Find Full Text PDFSignal Transduct Target Ther
July 2024
Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
J Cell Biol
August 2024
Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly.
View Article and Find Full Text PDFCell Death Dis
May 2024
Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites.
View Article and Find Full Text PDFNeurobiol Dis
June 2024
Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA. Electronic address:
Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!