Passive DNA demethylation preferentially up-regulates pluripotency-related genes and facilitates the generation of induced pluripotent stem cells.

J Biol Chem

From the CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences between Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China and Guangzhou Medical University, Guangzhou, Guangdong 511436,

Published: November 2017

A high proliferation rate has been observed to facilitate somatic cell reprogramming, but the pathways that connect proliferation and reprogramming have not been reported. DNA methyltransferase 1 (DNMT1) methylates hemimethylated CpG sites produced during S phase and maintains stable inheritance of DNA methylation. Impairing this process results in passive DNA demethylation. In this study, we show that the cell proliferation rate positively correlated with the expression of in G phase. In addition, as determined by whole-genome bisulfate sequencing and high-performance liquid chromatography, global DNA methylation of mouse embryonic fibroblasts was significantly higher in G phase than in G/M phase. Thus, we suspected that high cellular proliferation requires more expression in G phase to prevent passive DNA demethylation. The methylation differences of individual CpG sites between G and G/M phase were related to the methylation status and the positions of their surrounding CpG sites. In addition, larger methylation differences were observed on the promoters of pluripotency-related genes; for example, , , , , , and When such methylation differences or passive DNA demethylation accumulated with suppression and proliferation acceleration, DNA methylation on pluripotency-related genes was decreased, and their expression was up-regulated, which subsequently promoted pluripotency and mesenchymal-epithelial transition, a necessary step for reprogramming. We infer that high cellular proliferation rates promote generation of induced pluripotent stem cells at least partially by inducing passive DNA demethylation and up-regulating pluripotency-related genes. Therefore, these results uncover a connection between cell reprogramming and DNA methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682964PMC
http://dx.doi.org/10.1074/jbc.M117.810457DOI Listing

Publication Analysis

Top Keywords

passive dna
20
dna demethylation
20
pluripotency-related genes
16
dna methylation
16
cpg sites
12
methylation differences
12
dna
9
generation induced
8
induced pluripotent
8
pluripotent stem
8

Similar Publications

Monitoring biodiversity on a large scale, such as in hydropower reservoirs, poses scientific challenges. Conventional methods such as passive fishing gear are prone to various biases, while the utilization of environmental DNA (eDNA) metabarcoding has been restricted. Most eDNA studies have primarily focused on replicating results from traditional methods, which themselves have limitations regarding representativeness and bias.

View Article and Find Full Text PDF

Mitochondrial Mayhem: How cigarette smoke induces placental dysfunction through MMS19 degradation.

Ecotoxicol Environ Saf

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:

Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.

View Article and Find Full Text PDF

Nematodes are abundant and ubiquitous animals which are poorly known at intraspecific level. This work represents the first attempt to fill the gap on basic knowledge of genetic variability and differentiation in Protostrongylus oryctolagi, a nematode parasite of lagomorphs. 68 cox1 sequences were obtained from brown hares collected in five locations in Northern and Central Italy, highlighting the presence of a high amount of genetic variation inside this species.

View Article and Find Full Text PDF

Combating multidrug-resistant is considered a priority by the World Health Organization. Virulence mechanisms, such as biofilm formation, multidrug resistance, and high adherence to both biotic and abiotic surfaces, underscore the urgency of exploring approaches to control this pathogen. The search for new antibiotic compounds and alternative strategies like immunotherapies and vaccination offers potential solutions to address this pressing health concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!