Dietary sugars are linked to the development of non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia, but it is unknown if NAFLD itself influences the effects of sugars on plasma lipoproteins. To study this further, men with NAFLD ( = 11) and low liver fat 'controls' ( = 14) were fed two iso-energetic diets, high or low in sugars (26% or 6% total energy) for 12 weeks, in a randomised, cross-over design. Fasting plasma lipid and lipoprotein kinetics were measured after each diet by stable isotope trace-labelling.There were significant differences in the production and catabolic rates of VLDL subclasses between men with NAFLD and controls, in response to the high and low sugar diets. Men with NAFLD had higher plasma concentrations of VLDL-triacylglycerol (TAG) after the high (<0.02) and low sugar (<0.0002) diets, a lower VLDL-TAG fractional catabolic rate after the high sugar diet (<0.01), and a higher VLDL-TAG production rate after the low sugar diet (<0.01), relative to controls. An effect of the high sugar diet, was to channel hepatic TAG into a higher production of VLDL-TAG (<0.02) in the controls, but in contrast, a higher production of VLDL-TAG (<0.05) in NAFLD. These dietary effects on VLDL subclass kinetics could be explained, in part, by differences in the contribution of fatty acids from intra-hepatic stores, and de novo lipogenesis. The present study provides new evidence that liver fat accumulation leads to a differential partitioning of hepatic TAG into large and small VLDL subclasses, in response to high and low intakes of sugars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365592 | PMC |
http://dx.doi.org/10.1042/CS20171208 | DOI Listing |
Phys Rev Lett
December 2024
Duke University, Department of Physics, Durham, North Carolina 27708, USA.
The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Strathclyde, Institute of Photonics, SUPA Dept of Physics, Glasgow, United Kingdom.
We report a spiking flip-flop memory mechanism that allows controllably switching between neural-like excitable spike-firing and quiescent dynamics in a resonant tunneling diode (RTD) neuron under low-amplitude (<150 mV pulses) and high-speed (ns rate) inputs pulses. We also show that the timing of the set-reset input pulses is critical to elicit switching responses between spiking and quiescent regimes in the system. The demonstrated flip-flop spiking memory, in which spiking regimes can be controllably excited, stored, and inhibited in RTD neurons via specific low-amplitude, high-speed signals (delivered at proper time instants) offers high promise for RTD-based spiking neural networks, with the potential to be extended further to optoelectronic implementations where RTD neurons and RTD memory elements are deployed alongside for fast and efficient photonic-electronic neuromorphic computing and artificial intelligence hardware.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
BM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom.
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.
The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100 MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Sun Yat-sen University, School of Physics and Astronomy, Zhuhai 519082, China.
Vortex states of photons, electrons, and other particles are freely propagating wave packets with helicoidal wave fronts winding around the axis of a phase vortex. A particle prepared in a vortex state carries a nonzero orbital angular momentum projection on the propagation direction, a quantum number that has never been exploited in experimental particle and nuclear physics. Low-energy vortex photons, electrons, neutrons, and helium atoms have been demonstrated in experiment and found numerous applications, and there exist proposals of boosting them to higher energies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!