Malaria Parasites in a Hungry Host: Kinases and Host Caloric Restriction Brought Together.

Trends Parasitol

Department of Microbiology, Infection & Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia. Electronic address:

Published: November 2017

A study recently published in Nature links reduced calorie nutritional intake of host mice with (i) reduced severity of cerebral malaria, (ii) decreased parasitemia, and (iii) activation of a nutrient-sensing pathway that regulates the parasite's proliferation rate. Here, we discuss these findings in the context of human malaria pathology and Plasmodium kinomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2017.08.007DOI Listing

Publication Analysis

Top Keywords

malaria parasites
4
parasites hungry
4
hungry host
4
host kinases
4
kinases host
4
host caloric
4
caloric restriction
4
restriction brought
4
brought study
4
study published
4

Similar Publications

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Gossypol has demonstrated significant antimalarial activity against chloroquine-resistant and susceptible Plasmodium falciparum parasites. However, data on its potency in clinical isolates of P. falciparum remains limited.

View Article and Find Full Text PDF

Emerging nanotechnology-driven drug delivery solutions for malaria: Addressing drug resistance and improving therapeutic success.

Int J Pharm

January 2025

Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India. Electronic address:

Malaria remains the fifth deadliest parasitic infection worldwide, despite significant advancements in technology. A major challenge in combating this disease lies in the growing resistance of malaria parasites to antimalarial drugs and insect vectors to insecticides. The emerging inefficacy of artemisinin-based combination therapies (ACTs) further exacerbates the issue.

View Article and Find Full Text PDF

Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax.

View Article and Find Full Text PDF

Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!