On Earth, solar irradiance varies as the sun rises and sets over the horizon, and sunlight is thus in constant fluctuation, following a slow dark-low-high-low-dark curve. Optimal plant growth and development are dependent on the capacity of plants to acclimate and regulate photosynthesis in response to these changes of light. Little is known of regulative processes for photosynthesis during nocturnal events. The nucleus-encoded plant lineage-specific protein PSB33 has been described as stabilizing the photosystem II complex, especially under light stress conditions, and plants lacking PSB33 have a dysfunctional state transition. To clarify the localization and function of this protein, we used phenomic, biochemical and proteomics approaches in the model plant Arabidopsis. We report that PSB33 is predominantly located in non-appressed thylakoid regions and dynamically associates with a thylakoid protein complex in a light-dependent manner. Moreover, plants lacking PSB33 show an accelerated D1 protein degradation in nocturnal periods, and show severely stunted growth when challenged with fluctuating light. We further show that the function of PSB33 precedes the STN7 kinase to regulate or balance the excitation energy of photosystems I and II in fluctuating light conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853261PMC
http://dx.doi.org/10.1093/jxb/erx218DOI Listing

Publication Analysis

Top Keywords

fluctuating light
12
light conditions
8
plants lacking
8
lacking psb33
8
psb33
6
protein
5
light
5
psb33 sustains
4
sustains photosystem
4
photosystem protein
4

Similar Publications

Revealing real impact of microalgae on seasonal dynamics of bacterial community in a pilot-scale microalgal-bacterial consortium system.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:

The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle.

View Article and Find Full Text PDF

Polyphagous insect species develop using multiple host plants. Often considered beneficial, polyphagy can also be costly as host nutritional quality may vary. Drosophila suzukii (Matsumura) is an invasive species that can develop on numerous fruit species over the annual cycle.

View Article and Find Full Text PDF

Growing evidence places the gestational period as a unique moment of heightened neuroplasticity in adult life. In this longitudinal study spanning pre, during, and post pregnancy, we unveil a U-shaped trajectory in gray matter (GM) volume, which dips in late pregnancy and partially recovers during postpartum. These changes are most prominent in brain regions associated with the Default Mode and Frontoparietal Network.

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.

J Virol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!