Over the last decades, most information on the mechanisms underlying tolerance to drought has been gained by considering this stress as a single event that happens just once in the life of a plant, in contrast to what occurs under natural conditions where recurrent drought episodes are the rule. Here we explored mechanisms of drought tolerance in coffee (Coffea canephora) plants from a broader perspective, integrating key aspects of plant physiology and biochemistry. We show that plants exposed to multiple drought events displayed higher photosynthetic rates, which were largely accounted for by biochemical rather than diffusive or hydraulic factors, than those submitted to drought for the first time. Indeed, these plants displayed higher activities of RuBisCO and other enzymes associated with carbon and antioxidant metabolism. Acclimation to multiple drought events involved the expression of trainable genes related to drought tolerance and was also associated with a deep metabolite reprogramming with concordant alterations in central metabolic processes such as respiration and photorespiration. Our results demonstrate that plants exposed to multiple drought cycles can develop a differential acclimation that potentiates their defence mechanisms, allowing them to be kept in an 'alert state' to successfully cope with further drought events.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erx211DOI Listing

Publication Analysis

Top Keywords

drought events
16
drought tolerance
12
multiple drought
12
drought
11
tolerance coffee
8
plants exposed
8
exposed multiple
8
displayed higher
8
photosynthetic metabolic
4
metabolic acclimation
4

Similar Publications

Ethiopia's agriculture is mostly dependent on rain, though the rainfall distribution and amount are varied in spatiotemporal context. The study was conducted to analyze the distribution, trends, and variability of monthly, seasonal, and annual rainfall data over the Wollo area from 1981 to 2022. To accomplish this, the study utilized the Climate Hazards Group Infrared Precipitation with Stations version two (CHIRPS-v2) data.

View Article and Find Full Text PDF

Vegetation-climate feedbacks across scales.

Ann N Y Acad Sci

January 2025

Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.

View Article and Find Full Text PDF

Background: Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.

Results: We present a chromosome-scale reference genome of S.

View Article and Find Full Text PDF

Introduction: Climate change is shaping adolescent and young people's (AYP) transitions to adulthood with significant and often compounding effects on their physical and mental health. The climate crisis is an intergenerational inequity, with the current generation of young people exposed to more climate events over their lifetime than any previous one. Despite this injustice, research and policy to date lacks AYP's perspectives and active engagement.

View Article and Find Full Text PDF

Climate change poses significant challenges to global food security by altering precipitation patterns and increasing the frequency of extreme weather events such as droughts, heatwaves, and floods. These phenomena directly affect agricultural productivity, leading to lower crop yields and economic losses for farmers. This study leverages Artificial Intelligence (AI) and Explainable Artificial Intelligence (XAI) techniques to predict crop yields and assess the impacts of climate change on agriculture, providing a novel approach to understanding complex interactions between climatic and agronomic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!