Electrosynthesis has much to offer to the synthetic organic chemist. But in order to be widely accepted as a routine procedure in an organic synthesis laboratory, electrosynthesis needs to be presented in a much more user-friendly way. The literature is largely based on electrolysis in a glass beaker or H-cells that often give poor performance for synthesis with a very slow rate of conversion and, often, low selectivity and reproducibility. Flow cells can lead to much improved performance. Electrolysis is participating in the trend toward continuous flow synthesis, and this has led to a number of innovations in flow cell design that make possible selective syntheses with high conversion of reactant to product with a single passage of the reactant solution through the cell. In addition, the needs of the synthetic organic chemist can often be met by flow cells operating with recycle of the reactant solution. These cells give a high rate of product formation while the reactant concentration is high, but they perform best at low conversion. Both approaches are considered in this review and the important features of each cell design are discussed. Throughout, the application of the cell designs is illustrated with syntheses that have been reported.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.7b00360DOI Listing

Publication Analysis

Top Keywords

synthetic organic
12
laboratory electrosynthesis
8
organic chemist
8
flow cells
8
cell design
8
reactant solution
8
flow
5
flow electrolysis
4
cells
4
electrolysis cells
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Aqueous film-forming foam (AFFF) is a targeted product for liquid fuel fires and has the benefits of a long storage period and high fire extinguishing efficiency. However, because of the toxicity and bioaccumulation of the core raw material's long-chain fluorocarbon surfactant, traditional AFFF is being phased out. For this reason, three efficient AFFFs (F-1, F-2, and F-3; more details in Table 2) were designed using anionic surfactants (PBAF) with branched C perfluorinated chains, hexadecyltrimethylammonium bromide (CTAB), and dodecyl dimethyl betaine (BS-12) as core materials.

View Article and Find Full Text PDF

-Phenylphenothiazine-based Hyper-cross-linked Polymers for Recyclable, Heterogeneous Photocatalysis of Organic Transformations: A Strategy to Access 6-Difluoromethyl-phenanthridines.

Org Lett

January 2025

Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Herein, a -phenylphenothiazine-based hyper-cross-linked polymer (PTH-HCP) was finely designed and constructed, which serves as a metal-free heterogeneous photocatalyst for organic transformations. Characterization experiments have shown that this polymer demonstrates outstanding stability, extensive surface area, and exceptional photoelectric response properties. Moreover, PTH-HCP showed good catalytic efficiency and recyclability in the photochemically driven difluoromethylation/cyclization reactions.

View Article and Find Full Text PDF

Design of pH-responsive and amphiphilic pullulan-based biological macromolecule for gene delivery.

Int J Biol Macromol

January 2025

Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:

Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.

View Article and Find Full Text PDF

Heterocyclic chemistry gathered a wide audience due to their presence in potential drug candidates and being attractive synthons initiating several retro-syntheses the organic as well as in medicinal chemistry fields. Among them, azetidinones have been a subject of discussion due to their serendipity, curiosity, versatility by Penicillin and Cephalosporins as β-lactam antibiotics. Despite possessing a large margin of biological activities, azetidinones mainly work as antimicrobial, interfering with bacterial cell-wall synthesis blocking transpeptidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!