African swine fever (ASF) is a notifiable disease with serious socio-economic consequences that has been present in wild boar in the Baltic States and Poland since 2014. An introduction of ASF is usually accompanied by increased mortality, making fallen wild boar and hunted animals with signs of disease the main target for early warning and passive surveillance. It is difficult, however, to encourage hunters and foresters to report and take samples from these cases. A pragmatic and easy sampling approach with quick-drying swabs could facilitate this. In this study, we further evaluated the use of dry blood swabs for the detection of ASFV antibody and genome with samples from animal trials and diagnostic submissions (blood, bone and organs) from Estonia. Compared to serum samples, dried blood swabs yielded 93.1% (95% confidence interval: [83.3, 98.1]) sensitivity and 100% [95.9, 100.0] specificity in a commercial ASFV antibody ELISA. Similarly, the swabs gave a sensitivity of 98.9% [93.4, 100.0] and a specificity of 98.1% [90.1, 100.0] for genome detection by a standard ASFV p72 qPCR when compared to EDTA blood. The same swabs were tested in a VP72-antibody lateral flow device, with a sensitivity of 94.7% [85.4, 98.9] and specificity of 96.1% [89.0, 99.2] compared to the serum ELISA. When GenoTube samples tested in ELISA and LFD were compared, the sensitivity was 96.3% [87.3, 99.5] and the specificity was 93.8% [86.0, 97.9]. This study demonstrates reliable detection of ASFV antibody and genome from swabs. A field test of the swabs with decomposed wild boar carcasses in an endemic area in Estonia also gave promising results. Thus, this technique is a practical approach for surveillance of ASF in both free and endemic areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tbed.12706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!