pH Tunable and Divalent Metal Ion Tolerant Polymer Lipid Nanodiscs.

Langmuir

Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States.

Published: October 2017

The development and applications of detergent-free membrane mimetics have been the focus for the high-resolution structural and functional studies on membrane proteins. The introduction of lipid nanodiscs has attracted new attention toward the structural biology of membrane proteins and also enabled biomedical applications. Lipid nanodiscs provide a native lipid bilayer environment similar to the cell membrane surrounded by a belt made up of proteins or peptides. Recent studies have shown that the hydrolyzed form of styrene maleic anhydride copolymer (SMA) has the ability to form lipid nanodiscs and has several advantages over protein or peptide based nanodiscs. SMA polymer lipid nanodiscs have become very important for structural biology and nanobiotechnological applications. However, applications of the presently available polymer nanodiscs are limited by their instability toward divalent metal ions and acidic conditions. To overcome the limitations of SMA nanodiscs and to broaden the potential applications of polymer nanodiscs, the present study investigates the tunability of SMA polymer nanodiscs by systematically modifying the maleic acid functional group. The two newly developed polymers and subsequent lipid nanodiscs were characterized using solid-state NMR, FT-IR, TEM, and DLS experiments. The pH dependence and metal ion stability of these nanodiscs were studied using static light scattering and FTIR. The reported polymer nanodiscs exhibit unique pH dependent stability based on the modified functional group and show a high tolerance toward divalent metal ions. We also show these tunable nanodiscs can be used to encapsulate and stabilize a polyphenolic natural product curcumin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b02887DOI Listing

Publication Analysis

Top Keywords

lipid nanodiscs
24
polymer nanodiscs
16
nanodiscs
14
divalent metal
12
metal ion
8
polymer lipid
8
membrane proteins
8
structural biology
8
sma polymer
8
metal ions
8

Similar Publications

The vacuolar ATPase (V-ATPase; V V ) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase V proton channel subcomplex.

View Article and Find Full Text PDF

Identification of a binding site for small molecule inhibitors targeting human TRPM4.

Nat Commun

January 2025

Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland.

Transient receptor potential (TRP) melastatin 4 (TRPM4) protein is a calcium-activated monovalent cation channel associated with various genetic and cardiovascular disorders. The anthranilic acid derivative NBA is a potent and specific TRPM4 inhibitor, but its binding site in TRPM4 has been unknown, although this information is crucial for drug development targeting TRPM4. We determine three cryo-EM structures of full-length human TRPM4 embedded in native lipid nanodiscs without inhibitor, bound to NBA, and an anthranilic acid derivative, IBA.

View Article and Find Full Text PDF

Membrane Proteins in Nanodiscs: Methods and Applications.

ChemMedChem

January 2025

Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, 94 Weijin Road, 300071, Tianjin, CHINA.

Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities.

View Article and Find Full Text PDF

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

In the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!