Transketolase catalyzes asymmetric C-C bond formation of two highly polar compounds. Over the last 30 years, the reaction has unanimously been described in literature as irreversible because of the concomitant release of CO if using lithium hydroxypyruvate (LiHPA) as a substrate. Following the reaction over a longer period of time however, we have now found it to be initially kinetically controlled. Contrary to previous suggestions, for the non-natural conversion of synthetically more interesting apolar substrates, the complete change of active-site polarity is therefore not necessary. From docking studies it was revealed that water and hydrogen-bond networks are essential for substrate binding, thus allowing aliphatic aldehydes to be converted in the charged active site of transketolase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573996PMC
http://dx.doi.org/10.1002/cctc.201601649DOI Listing

Publication Analysis

Top Keywords

separating thermodynamics
4
thermodynamics kinetics-a
4
kinetics-a understanding
4
understanding transketolase
4
transketolase reaction
4
reaction transketolase
4
transketolase catalyzes
4
catalyzes asymmetric
4
asymmetric c-c
4
c-c bond
4

Similar Publications

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.

View Article and Find Full Text PDF

Objective: To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.

Methods: Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.

View Article and Find Full Text PDF

Theoretical Design for Thorium-Containing Two-Dimensional Materials.

Inorg Chem

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China.

Actinide elements are characterized by their unique electronic correlations, variable valence states, and localized 5f electrons, leading to unconventional electronic and topological properties in their compounds. The distinctive physical properties of actinide materials are maintained in low-dimensional forms, yet two-dimensional (2D) actinide materials remain largely unexplored due to their scarcity and the experimental challenges posed by their radioactivity. To fill the knowledge gap in 2D actinide materials, we theoretically designed a series of stable thorium-containing 2D materials, including MXenes, chalcogenides, halides, and other compounds with unique structures.

View Article and Find Full Text PDF

Enantiomeric separation of chiral molecules is pivotal for exploring fundamental questions about life's origin and many other fields. Crystallisation is an important platform for the separation of chiral molecules, elegantly applied to many systems, for instance, the formation of conglomerates, where the enantiomers crystallise as separate phases. Many approaches have been proposed to explore crystallisation-driven enantiomeric separation with fewer insights into the complex pathways associated with the separation processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!