Cell-penetrating peptides constitute efficient delivery vectors, and studies of their uptake and mechanism of translocation typically involve fluorophore-labeled conjugates. In the present study, the influence of a number of specific fluorophores on the physico-chemical properties and uptake-related characteristics of penetratin were studied. An array of seven fluorophores belonging to distinct structural classes was examined, and the impact of fluorophore labeling on intracellular distribution and cytotoxicity was correlated to the physico-chemical properties of the conjugates. Exposure of several mammalian cell types to fluorophore-penetratin conjugates revealed a strong structure-dependent reduction in viability (1.5- to 20-fold lower IC values as compared to those of non-labeled penetratin). Also, the degree of less severe effects on membrane integrity, as well as intracellular distribution patterns differed among the conjugates. Overall, neutral hydrophobic fluorophores or negatively charged fluorophores conferred less cytotoxicity as compared to the effect exerted by positively charged, hydrophobic fluorophores. The latter conjugates, however, exhibited less membrane association and more clearly defined intracellular distribution patterns. Thus, selection of the appropriate flurophore is critical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2017.09.015 | DOI Listing |
Background And Aims: Body composition parameters associated with aerobic fitness, mirrored by maximal oxygen consumption (V̇Omax), have recently gained interest as indicators of physical efficiency in facioscapulohumeral dystrophy (FSHD). Bioimpedance analysis (BIA) allows a noninvasive and repeatable estimate of body composition but is based on the use of predictive equations which, if used in cohorts with different characteristics from those for which the equation was originally formulated, could give biased results. Instead, the phase angle (PhA), a BIA raw bioelectrical parameter reflecting body fluids distribution, could provide reliable data for such analysis.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFRNA
January 2025
IRB, Barcelona
Virtually all mRNAs acquire a poly(A) tail co-transcriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create post-transcriptional gene expression programs, allowing for precise temporal and spatial control.
View Article and Find Full Text PDFLymphat Res Biol
January 2025
Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, Australia.
Current understanding of changes in fluid distribution in response to the application of compression in primary lymphedema (PLE) is limited. This study measured fluid distribution before and after one application of standardized intermittent pneumatic compression (IPC) in the lower limbs of people with PLE, compared with those without lymphedema. High-frequency ultrasound (HFU) was used to measure dermal fluid, bioimpedance to measure segmental fluid, and percent water content (PWC) to measure fluid at specific anatomical points.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;
Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!