Ambystoma tigrinum virus (ATV) (family Iridoviridae, genus Ranavirus) was isolated from diseased tiger salamanders (Ambystoma tigrinum stebbinsi) from the San Rafael Valley in southern Arizona, USA in 1996. Genomic sequencing of ATV, as well as other members of the genus, identified an open reading frame that has homology to the eukaryotic translation initiation factor, eIF2α (ATV eIF2α homologue, vIF2αH). Therefore, we asked if the ATV vIF2αH could also inhibit PKR. To test this hypothesis, the ATV vIF2αH was cloned into vaccinia virus (VACV) in place of the well-characterized VACV PKR inhibitor, E3L. Recombinant VACV expressing ATV vIF2αH partially rescued deletion of the VACV E3L gene. Rescue coincided with rapid degradation of PKR in infected cells. These data suggest that the salamander virus, ATV, contains a novel gene that may counteract host defenses, and this gene product may be involved in the presentation of disease caused by this environmentally important pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192022PMC
http://dx.doi.org/10.1016/j.virol.2017.08.012DOI Listing

Publication Analysis

Top Keywords

ambystoma tigrinum
12
atv vif2αh
12
pkr inhibitor
8
tigrinum virus
8
vaccinia virus
8
virus atv
8
atv
7
virus
5
characterization pkr
4
inhibitor pathogenic
4

Similar Publications

Maynard Smith's proposed two-fold cost of sex states that one of the disadvantages of clonal reproduction is the decreased ability to persist in dynamic ecosystems. However, the long-term persistence of some clonal alloploid lineages suggests that these lineages may not always be so ephemeral in nature. Understanding the stability of these lineages over time can inform our understanding of the advantages of an asexual mode of life.

View Article and Find Full Text PDF

The Genetic Odyssey of Axolotl Regeneration: Insights and Innovations.

Int J Dev Biol

December 2024

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.

The axolotl, a legendary creature with the potential to regenerate complex body parts, is positioned as a powerful model organism due to its extraordinary regenerative capabilities. Axolotl can undergo successful regeneration of multiple structures, providing us with the opportunity to understand the factors that exhibit altered activity between regenerative and non-regenerative animals. This comprehensive review will explore the mysteries of axolotl regeneration, from the initial cellular triggers to the intricate signaling cascades that guide this complex process.

View Article and Find Full Text PDF

Management of vulnerable amphibian populations requires a better understanding of the habitat factors that will make the greatest difference in their preservation. We set out to develop a predictive model of amphibian abundance based on habitat characteristics that may influence their survival and persistence. Our study system was the Sonoma County California tiger salamander (Ambystoma californiense; SCTS), an amphibian threatened by habitat loss and fragmentation.

View Article and Find Full Text PDF

Antibacterial Activity of AXOTL-13, a Novel Peptide Identified from the Transcriptome of the Salamander .

Pharmaceutics

November 2024

Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia.

Article Synopsis
  • - Antimicrobial peptides (AMPs) play a crucial role in innate immunity and have various functions, making them promising alternatives to traditional antibiotics, especially as antibiotic resistance rises.
  • - The study discovered a new peptide, AXOTL-13, using transcriptome data, confirmed its antibacterial properties through PCR and synthesis, and found it effectively inhibits bacterial growth without harming red blood cells.
  • - This research is groundbreaking in identifying and evaluating the antimicrobial activity of peptides, specifically AXOTL-13, and it lays the groundwork for future studies in the field.
View Article and Find Full Text PDF
Article Synopsis
  • Restoring nerve injury in humans is challenging, especially in the central nervous system (CNS), where factors like glial scars hinder regeneration compared to the peripheral nervous system (PNS), which relies on Schwann cells for support.
  • Unlike humans, some species like axolotls and planarians can regenerate their nervous systems thanks to abundant pluripotent stem cells that can differentiate into various cell types.
  • Understanding the molecular pathways of these regenerating species may provide insights and new strategies for improving nerve regeneration therapies in humans.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!