We examined if experts and novices show different utilization of the torque components impulses during dart throwing. Participants threw darts continuously at a dartboard aiming for the centre (target bull's eye). The upper-limb joint torque impulses were obtained through inverse dynamics with anthropometric and motion capture data as input. Depending on the joint degree of freedom (DOF) and movement phase (acceleration and follow-through), three main strategies of net torque (NET) impulse generation through joint muscle (MUS) and interaction (INT) torque impulses were highlighted. Firstly, our results showed that the elbow flexion-extension DOF leads the movement according to the joint leading hypothesis. Then, considering the acceleration phase, the analysis revealed differences in torque impulse decomposition between expert and novices. For the glenohumeral (GH) joint abduction-adduction and for wrist flexion, the INT torque impulse contributed positively to NET joint torque impulse in the group of experts unlike novices. This allowed to lower the necessary MUS torque impulse at these DOFs. Also, GH axial rotation was actively controlled by muscle torque impulse in the group of experts. During the follow-through, the experts used the INT torque impulse more proficiently than novices to break the elbow extension. The comparison between experts and novices through inverse dynamics document the link between the exploitation of interaction torques impulses and expertise in dart throwing for which the main objective is precision rather than velocity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humov.2017.09.004 | DOI Listing |
Sports (Basel)
January 2025
DMeM, University of Montpellier, INRAE, 34000 Montpellier, France.
Background: Objective training load (TL) indexes used in resistance training lack physiological significance. This study was aimed to provide a muscle physiology-based approach for quantifying TL in resistance exercises (REs).
Methods: Following individual torque-velocity profiling, fifteen participants (11 healthy males, stature: 178.
Philos Trans A Math Phys Eng Sci
December 2024
School of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ, UK.
In 1992, Allen . (Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.
View Article and Find Full Text PDFSensors (Basel)
November 2024
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
Ultrasonic vibration-assisted grinding is a critical method for machining ultra-hard optical molds. However, current ultrasonic-assisted grinding spindles, as essential foundational equipment, face limitations in maintaining ultra-high rotational speed, high precision, and a compact structure during ultrasonic operation. This study presents a novel ultra-precision ultrasonic-assisted high-speed aerostatic spindle for grinding ultra-hard optical molds, developed through theoretical calculations, FEM, and CFD simulations.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
December 2024
Movement-Interactions-Performance, MIP, UR 4334, Le Mans Université, Le Mans, France; Laboratoire IRISSE, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, Le Tampon, Ile de la Réunion, France.
Phys Rev Lett
August 2024
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector-81, Mohali 140306, India.
We show a new class of optical silk torsion pendulum (TOP) with zepto-Newton-meter (zNm) sensitivity achieved by exploiting hitherto unknown ultrasoft twist response of tough silk fibers in ultrahigh vacuum. We demonstrate several macroscopic microgram TOPs using three different silk types showing 6 orders of magnitude wide range of sensitivity calibrated using up to zNm optical torques. Remarkably, a nanoscale diameter capture silk exhibits about 20 fNm/rad torsion constant with low damping and responds to sub-400 zNm impulses over many oscillation cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!