Background/purpose: Multiple BRSs and specifically the Absorb scaffold (BVS) (Abbott Vascular, Santa Clara, CA USA) have been often used to treat long diffuse coronary artery lesions. We evaluate by a computational fluid dynamic(CFD) study the impact on the intravascular fluid rheology on multiple bioabsorbable scaffolds (BRS) by standard overlapping versus edge-to-edge technique.
Methods/materials: We simulated the treatment of a real long significant coronary lesion (>70% luminal narrowing) involving the left anterior descending artery (LAD) treated with a standard or edge-to-edge technique, respectively. Simulations were performed after BVS implantations in two different conditions: 1) Edge-to-edge technique, where the scaffolds are kissed but not overlapped resulting in a luminal encroachment of 0.015cm (150μm); 2) Standard overlapping, where the scaffolds are overlapped resulting in a luminal encroachment of 0.030cm (300μm). After positioning the BVS across the long lesion, the implantation procedure was performed in-silico following all the usual procedural steps.
Results: Analysis of the wall shear stress (WSS) suggested that at the vessel wall level the WSS were lower in the overlapping zones overlapping compared to the edge-to-edge zone (∆=0.061Pa, p=0.01). At the struts level the difference between the two WSS was more striking (∆=1.065e-004 p=0.01) favouring the edge-to-edge zone.
Conclusions: Our study suggested that at both vessel wall and scaffold struts levels, there was lowering WSS when multiple BVS were implanted with the standard overlapping technique compared to the "edge-to-edge" technique. This lower WSS might represent a substrate for restenosis, early and late BVS thrombosis, potentially explaining at least in part the recent evidences of devices poor performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carrev.2017.08.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!