Structural controllability is the generalization of traditional controllability for dynamical systems. During the last decade, interesting biological discoveries have been inferred by applied structural controllability analysis to biological networks. However, false positive/negative information (i.e. nodes and edges) widely exists in biological networks that documented in public data sources, which can hinder accurate analysis of structural controllability. In this study, we propose WDNfinder, a comprehensive analysis package that provides structural controllability with consideration of node connection strength in biological networks. When applied to the human cancer signaling network and p53-mediate DNA damage response network, WDNfinder shows high accuracy on essential nodes prediction in these networks. Compared to existing methods, WDNfinder can significantly narrow down the set of minimum driver node set (MDS) under the restriction of domain knowledge. When using p53-mediate DNA damage response network as illustration, we find more meaningful MDSs by WDNfinder. The source code is implemented in python and publicly available together with relevant data on GitHub: https://github.com/dustincys/WDNfinder .

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720017500214DOI Listing

Publication Analysis

Top Keywords

structural controllability
16
biological networks
12
minimum driver
8
driver node
8
node set
8
p53-mediate dna
8
dna damage
8
damage response
8
response network
8
wdnfinder
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!