Several mechanisms have been postulated for orchestrating the mobilization of hematopoietic stem/progenitor cells (HSPCs), and we previously proposed that activation of the complement cascade plays a crucial role in the initiation and execution of the egress of HSPCs from bone marrow (BM) into peripheral blood (PB). In support of this notion, we demonstrated that mice deficient in the mannan-binding lectin (MBL) pathway, which activates the proximal part of the complement cascade, as well as mice deficient in the fifth component of the complement cascade (C5), which is part of the distal part of the complement cascade, are poor mobilizers. To further narrow down on the exact mechanisms and the molecules involved, we performed studies in mice that do not express the receptor C5aR, which binds the C5 cleavage fragments, C5a and C5a. We also employed the plasma stable nucleic acid aptamer AON-D21 that binds and neutralizes C5a and C5a. We present evidence that mice deficient in C5aR or treated with AON-D21 are poor HSPC mobilizers, thereby establishing a critical role for the C5a/C5a-C5aR axis in the mobilization process. While enhancing mobilization is of clinical importance for poor mobilizers, inhibition of the complement cascade could be of therapeutic importance in patients suffering from paroxysmal nocturnal hemoglobinuria (PNH) or acquired hemolytic syndrome (aHUS).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730632 | PMC |
http://dx.doi.org/10.1007/s12015-017-9769-6 | DOI Listing |
Front Microbiol
December 2024
Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China.
Long COVID is an often-debilitating condition with severe, multisystem symptoms that can persist for weeks or months and increase the risk of various diseases. Currently, there is a lack of diagnostic tools for Long COVID in clinical practice. Therefore, this study utilizes plasma proteomics and metabolomics technologies to understand the molecular profile and pathophysiological mechanisms of Long COVID, providing clinical evidence for the development of potential biomarkers.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.
View Article and Find Full Text PDFExp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, P. R. China. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease linked to aging. This study investigates potential connections between IPF and age-related eye problems using a bleomycin-induced IPF mouse model. Intratracheal administration of bleomycin induces rapid lung injury in mice, followed by IPF with characteristics of cellular senescence.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China. Electronic address:
DHAV-3 is one of the main causative agents of duck viral hepatitis (DVH), an acute and highly lethal infectious disease in duck industry. However, the understanding of the pathogenesis of this virus in ducklings is limited. To dissect the molecular characteristics associated with pathobiology of ducklings to DHAV-3, we applied single-cell RNA-sequencing approach to profile the transcriptome of 1.
View Article and Find Full Text PDFAm J Cardiovasc Drugs
January 2025
Pediatric Nephrology, State University of Campinas, São Paulo, Brazil.
Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!