Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers. In addition, the ChR2-EYFP fusion protein was also expressed in somata of the great majority of inhibitory interneurons, including horizontal cells and GABAergic and glycinergic amacrine cells. However, a small population of amacrine cells residing in the ganglion cell layer were not labeled by EYFP, and a part of them were cholinergic ones. In contrast, no EYFP signal was detected in the somata of retinal excitatory neurons: photoreceptors, bipolar and ganglion cells, as well as Müller glial cells. When glutamatergic transmission was blocked, bright blue light stimulation elicited inward photocurrents from amacrine cells, as well as post-synaptic inhibitory currents from ganglion cells, suggesting a functional ChR2 expression. The VGAT-ChR2-EYFP mouse therefore could be a useful animal model for dissecting retinal microcircuits when targeted labeling and/or optogenetic manipulation of retinal inhibitory neurons are required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2017.09.006 | DOI Listing |
J Physiol
May 2024
Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored.
View Article and Find Full Text PDFFront Behav Neurosci
August 2018
Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The globus pallidus (GP) is emerging as a critical locus of basal ganglia control of motor activity, but the exact role of GABAergic GP neurons remain to be defined. By targeted expression of channelrhodopsin 2 (ChR2) in GABAergic neurons using the VGAT-ChR2-EYFP transgenic mice, we showed that optogenetic stimulation of GABAergic neurons in the right GP produced hyperkinesia. Optogenetic stimulation of GABAergic GP neurons increased c-Fos-positive cells in GP, M1 cortex, and caudate-putamen (CPu), and decreased c-Fos-positive cells in entopeduncular nucleus (EPN), compared to the contralateral hemisphere.
View Article and Find Full Text PDFNeuroscience
November 2017
Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China. Electronic address:
Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers.
View Article and Find Full Text PDFFront Neural Circuits
October 2017
Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel Hill, NC, USA.
The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC).
View Article and Find Full Text PDFJ Neurosci
October 2014
Department of Biology, Program in Neuroscience and Behavior, Hall-Atwater Laboratory, Wesleyan University, Middletown, Connecticut 06459-0170,
Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!