In this review we describe a series of major concepts introduced during the past 150years that have contributed to our current understanding about how physiological processes required for well-being and survival are regulated. One can theorize that hierarchical networks involving input-output relationships continuously orchestrate and learn adaptive patterns of observable behaviors, cognition, memory, mood, and autonomic systems. Taken together, these networks function as "good regulators" determining levels of internal variables and act as if there were homeostatic comparators ("homeostats"). The consequences of models with vs. without homeostats remain the same in terms of allostatic load and the eventual switch from stabilizing negative feedback loops to destabilizing, pathogenic positive feedback loops. Understanding this switch seems important for comprehending senescence-related, neurodegenerative disorders that involve the autonomic nervous system. Our general proposal is that disintegration of homeostatic systems causes disorders of regulation in degenerative diseases and that medical cybernetics can inspire and rationalize new approaches to treatment and prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819891 | PMC |
http://dx.doi.org/10.1016/j.autneu.2017.09.001 | DOI Listing |
Biol Open
January 2025
Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.
View Article and Find Full Text PDFEmbryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit.
View Article and Find Full Text PDFHomeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals.
View Article and Find Full Text PDFNat Neurosci
January 2025
School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.
View Article and Find Full Text PDFPhysiol Rev
January 2025
University of Zurich, Vetsuise Faculty, Institute of Veterinary Physiology, Zurich, Switzerland.
Metabolic energy stored mainly as adipose tissue is homeostatically regulated. There is strong evidence that human body weight () is physiologically regulated, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!