Dielectric properties of isolated adrenal chromaffin cells determined by microfluidic impedance spectroscopy.

Bioelectrochemistry

Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Reno, NV 89557, USA.

Published: February 2018

Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1kHz and 20MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner mixture model and the Clausius-Mossotti factor was obtained. Lastly, to extract the cellular dielectric parameters, the cell dielectric data were fit into a granular cell model representative of a chromaffin cell, which was based on the inclusion of secretory granules in the cytoplasm. Chromaffin cell parameters determined from this study were the cell and secretory granule membrane specific capacitance (1.22 and 7.10μF/cm, respectively), the cytoplasmic conductivity, which excludes and includes the effect of intracellular membranous structures (1.14 and 0.49S/m, respectively), and the secretory granule milieu conductivity (0.35S/m). These measurements will be crucial for incorporating into numerical models aimed at understanding the differential poration effect of nanosecond electric pulses on chromaffin cell membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2017.09.001DOI Listing

Publication Analysis

Top Keywords

dielectric properties
12
chromaffin cell
12
properties isolated
8
adrenal chromaffin
8
chromaffin cells
8
impedance spectroscopy
8
numerical models
8
models aimed
8
aimed understanding
8
nanosecond electric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!