Glycerosomes were formulated using 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC), diclofenac sodium salt and 10, 20 or 30% glycerol in the water phase, while corresponding liposomes were prepared with the same amount of DMPC and diclofenac, without glycerol. The aim of the present work was to evaluate the effect of the used phospholipid on vesicle features and ability to favour diclofenac skin deposition by comparing these results with those found in previous works performed using hydrogenated soy phosphatidylcholine (P90H) and dipalmitoylphosphatidylcholine (DPPC). Liposomes and glycerosomes were multilamellar, liposomes being smaller (72±6nm). Interactions among glycerol, phospholipids and drug led to the formation of a non-rigid bilayer structure and a variation of the main transition temperature, which shifted to lower temperature. The addition of glycerol led to the formation of more viscous systems (from ∼2.5mPa/s for basic liposomes to ∼5mPa/s for glycerosomes), which improved spread ability of the formulations on the skin.Results obtained in vitro were promising using glycerosomes, irrespective of the amount of glycerol used: the amount of drug, which accumulated into and permeated through the different skin strata, was high and comparable with that obtained using P90H, suggesting that glycerosomes may represent an efficient carrier for both local effect or systemic absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.09.026DOI Listing

Publication Analysis

Top Keywords

12-dimyristoyl-sn-glycero-3-phosphatidycholine dmpc
8
dmpc diclofenac
8
led formation
8
glycerosomes
6
glycerol
5
glycerosomes investigation
4
investigation role
4
role 12-dimyristoyl-sn-glycero-3-phosphatidycholine
4
dmpc assembling
4
assembling skin
4

Similar Publications

Structural and Dynamical Response of Lipid Bilayers to Solvation of an Amphiphilic Anesthetic.

J Phys Chem B

January 2025

Department of Polymers for Electronics and Photonics, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic.

The structural response of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (H NMR, P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain.

View Article and Find Full Text PDF

The Effect of Lipopolysaccharides from on the Size, Density, and Compressibility of Phospholipid Vesicles.

Biomimetics (Basel)

January 2025

Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia.

The properties of the large unilamellar vesicles (LUVs) from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), modified by lipopolysaccharides (LPS) from sv. Enteritidis, which mimics Gram-negative bacteria, were studied by various physical methods. LPS, in the range of 0/20/50 % / relative to the lipid, had a regulatory role in the structure of the LUVs toward the lower size, low polydispersity, and over-a-month size stability due to the lower negative zeta potential.

View Article and Find Full Text PDF

Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes.

J Phys Chem B

January 2025

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.

PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).

View Article and Find Full Text PDF

Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture.

Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1-F24).

Methods: Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations.

View Article and Find Full Text PDF

Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis.

Molecules

December 2024

REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

In this study, we synthesized a series of 3-hydroxy-4-pyridinone (3,4-HPO) chelators with varying lipophilicity by modifying the length of their alkyl chains. To investigate their interaction with lipid membranes, we employed differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy using dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) liposomes as membrane model systems. DSC experiments on DMPC liposomes revealed that hexyl-substituted chelators significantly altered the thermotropic phase behavior of the lipid bilayer, indicating their potential as membrane property modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!