Development and characterization of ricinoleic acid-based sulfhydryl thiol and ethyl cellulose blended membranes.

Carbohydr Polym

Institute of Chemical Industry of Forestry Products, CAF, Jiangsu Province Biomass Energy and Materials Laboratory, National Engineering Lab. for Biomass Chemical Utilization, Key and Lab. on Forest Chemical Engineering, SFA, Nanjing 210042, PR China; Institute of Forest New Technology, CAF, Beijing 100091, PR China. Electronic address:

Published: November 2017

Ethyl cellulose (EC) membranes can be combined with efficient plasticizers derived from renewable resources to form supramolecular systems. In this paper, a novel ricinoleic acid-based sulfhydryl triol (STRA) was first synthesized and used as a plasticizer for EC membranes. A supramolecular membrane of EC and STRA using van der Waals forces was designed. The morphology, hydrophilic performance, thermal stability, and mechanical properties of the composites were investigated. While pure EC is brittle, its membrane ductility and hydrophilic performance can be improved by integration with STRA. The highest tensile strength was found in EC/STRA (90/10) (8.37MPa). Impressively, the EC/STRA(60/40) and EC/STRA(50/50) elongation at break values were 17.4 and 20.2 times higher, respectively, than that of pure EC. This novel ricinoleic acid-based sulfhydryl triol can be used as a feedstock for hydrophobic EC membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.07.069DOI Listing

Publication Analysis

Top Keywords

ricinoleic acid-based
12
acid-based sulfhydryl
12
ethyl cellulose
8
novel ricinoleic
8
sulfhydryl triol
8
hydrophilic performance
8
development characterization
4
characterization ricinoleic
4
sulfhydryl thiol
4
thiol ethyl
4

Similar Publications

Natural gamma-decalactone (GDL) produced by biotransformation is an essential food additive with a peach-like aroma. However, the difficulty of effectively controlling the concentration of the substrate ricinoleic acid (RA) in water limits the biotransformation productivity, which is a bottleneck for industrialization. In this study, expanded vermiculite (E-V) was utilized as a carrier of RA to increase its distribution in the medium.

View Article and Find Full Text PDF

Development and characterization of ricinoleic acid-based sulfhydryl thiol and ethyl cellulose blended membranes.

Carbohydr Polym

November 2017

Institute of Chemical Industry of Forestry Products, CAF, Jiangsu Province Biomass Energy and Materials Laboratory, National Engineering Lab. for Biomass Chemical Utilization, Key and Lab. on Forest Chemical Engineering, SFA, Nanjing 210042, PR China; Institute of Forest New Technology, CAF, Beijing 100091, PR China. Electronic address:

Ethyl cellulose (EC) membranes can be combined with efficient plasticizers derived from renewable resources to form supramolecular systems. In this paper, a novel ricinoleic acid-based sulfhydryl triol (STRA) was first synthesized and used as a plasticizer for EC membranes. A supramolecular membrane of EC and STRA using van der Waals forces was designed.

View Article and Find Full Text PDF

A series of novel ricinoleic acid based lipoamino acid derivatives were synthesized from (Z)-methyl-12-aminooctadec-9-enoate and different l-amino acids (glycine, alanine, phenyl alanine, valine, leucine, isoleucine, proline and tryptophan). The structures of all the prepared compounds were characterized by H NMR, C NMR and mass spectral studies. The title compounds were evaluated for their antimicrobial and anti-biofilm activities.

View Article and Find Full Text PDF

The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!