Marine plastic pollution is an increasing, and global, environmental issue. Numerous marine species are affected by plastic debris through entanglement, nest incorporation, and ingestion, which can lead to lethal and sub-lethal impacts. However, in the northeastern Atlantic Ocean, an area of international importance for seabirds, there has been little effort to date to assess information from studies of wildlife and plastic to better understand the spatiotemporal variation of how marine plastic affects different seabird species. To improve our understanding of seabirds and marine plastic in this region, we completed a synthesis of the published and grey literature to obtain information on all known documented cases of plastic ingestion and nest incorporation by this group. We found that of 69 seabird species that commonly occur in the northeastern Atlantic, 25 had evidence of ingesting plastic. However, data on plastic ingestion was available for only 49% of all species, with 74% of investigated species recorded ingesting plastic. We found only three published studies on nest incorporation, for the Northern Gannet (Morus bassanus) and Black-legged Kittiwake (Rissa tridactyla). For many species, sample sizes were small or not reported, and only 39% of studies were from the 21st century, whilst information from multiple countries and years was only available for 11 species. This indicates that we actually know very little about the current prevalence of plastic ingestion and nest incorporation for many species, several of them globally threatened. Furthermore, in the majority of studies, the metrics reported were inadequate to carry out robust comparisons among locations and species or perform meta-analyses. We recommend multi-jurisdictional collaboration to obtain a more comprehensive and current understanding of how marine plastic is affecting seabirds in the northeastern Atlantic Ocean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2017.08.101 | DOI Listing |
Sci Total Environ
January 2025
School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Coastal ecosystems are increasingly threatened by the accumulation of marine litter globally. Limited data availability along India's eastern coast hinders targeted mitigation efforts. This study assesses coastal litter along Visakhapatnam, a smart city on India's eastern coast, using the NOAA shoreline debris protocol.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biology, University of the Balearic Islands, Palma 07122, Spain. Electronic address:
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.
The present review provides the first analysis and synthesis of the available scientific information on the effects of anthropogenic contaminants on cephalopod embryos, paralarvae, and juveniles. We evaluated 46 articles published between 1970 and 2023 that focused on trace elements (69%), pharmaceutical compounds (11%), persistent organic compounds (11%), and plastics (9%). To date, the greatest scientific effort has originated from Europe and Asia (France [57%], China [9%], Italy [7%], and Spain [4%]), with few reports available from the rest of the world.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFWater Res
December 2024
College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:
Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!