Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The article describes a novel approach towards improving selectivity of volatile compounds detection using metal nanoparticles. It is based on combination of sensitive optical detection using convenient nanoparticle-modified paper test strips and dynamic gas extraction improving selectivity to volatile compounds. A simple and inexpensive setup allowing for realization of this combination is described. Analytical prospects of the approach are shown by the example of chlorine determination in highly salted aqueous solutions using silver triangular nanoplates and digital colorimetry. The limit of detection is equal to 0.03mgL and the determination range is 0.1-2mgL. This determination can be successfully carried out in solutions containing at least 2·10 greater molar amounts of Na, K, Zn, Cl, SO, and HPO with no sample pretreatment. The approach seems to be compatible with different types of nanoparticles with respect to detection of various analytes, thus having good opportunities for further development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2017.08.056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!