The performance, microbial community and enzymatic activity of a sequencing batch reactor (SBR) were evaluated at different silica nanoparticles (SiO NPs) concentrations. SiO NPs concentration at 5-30mg/L had a slight inhibitory impact on the nitrogen and COD removals, whereas the phosphorus removal was obviously inhibited at 30mg/L SiO NPs. The rates of nitrification, nitrite reduction and phosphorus removal decreased with the increase of SiO NPs concentration. The nitrate reduction rate decreased at less than 5mg/L SiO NPs and subsequently showed an increase at 10-30mg/L SiO NPs. The organic matter, nitrogen and phosphorus removal rates had similar varying tendencies to the corresponding microbial enzymatic activities under SiO NPs stress. Some SiO NPs were firstly absorbed on sludge surface and subsequently entered the interior of the microbial cells, which could exert the biological toxicity to activated sludge. The microbial community showed some obvious variations under SiO NPs stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.09.018DOI Listing

Publication Analysis

Top Keywords

sio nps
36
microbial community
12
phosphorus removal
12
sio
9
nps
9
sequencing batch
8
batch reactor
8
silica nanoparticles
8
nps concentration
8
nps stress
8

Similar Publications

Sonochemical Functionalization of SiO Nanoparticles with Citric Acid and Monoethanolamine and Its Remarkable Effect on Antibacterial Activity.

Materials (Basel)

January 2025

Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Departamento de Física Aplicada, Mérida 97310, Yucatán, Mexico.

Nanoparticles (NPs) are excellent antibacterial agents due to their ability to interact with microorganisms at the cellular level. However, their antimicrobial capacity can be limited by their tendency to agglomerate. Functionalizing NPs with suitable ligands improves their stability and dispersion in different media and enhances their antibacterial activity.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

The detection of heavy metals in soil is of great scientific significance for food security and human health. However, traditional detection methods are complicated, time-consuming, and labor-intensive. Herein, we developed a novel method using Au@SiO nanoparticles (NPs) and surface microstructure combined with laser-induced breakdown spectroscopy (Au@SiO NPs-SMS-LIBS) for the rapid detection of lead (Pb), chromium (Cr), and copper (Cu) in soil samples.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Robust, Fluorine-Free Superhydrophobic Films on Glass via Epoxysilane Pretreatment.

Langmuir

January 2025

Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Durable and fluorine-free superhydrophobic films were fabricated by a simple two-step process involving the pretreatment of glass substrates with an epoxysilane, which acted as an adhesive. The next step involved the aerosol-assisted chemical vapor deposition of a simple mixture of polydimethylsiloxane (PDMS) and SiO nanoparticles (NPs). Various parameters were studied, such as deposition time as well as PDMS and SiO loadings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!