Chemical approaches are very powerful tools for investigating the molecular structure and architecture of large ribonucleoprotein complexes involving ribosomes and other components of the translation system. Application of RNA nucleotide-specific and cross-linking reagents of a broad specificity range allows the researcher to obtain information on the sites of ligand binding to the ribosome and to each other as well as on the RNA rearrangements caused by the binding. Here, we describe specific chemical approaches including chemical probing and site-directed or bifunctional reagent-mediated cross-linking, which have been used for exploring the mechanism of selenocysteine insertion into a polypeptide chain by mammalian ribosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7258-6_6DOI Listing

Publication Analysis

Top Keywords

chemical approaches
12
specific chemical
8
mammalian ribosomes
8
approaches studying
4
studying mammalian
4
ribosomes complexed
4
complexed ligands
4
ligands involved
4
involved selenoprotein
4
selenoprotein synthesis
4

Similar Publications

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

December 2024

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements.

J Am Chem Soc

December 2024

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Half-Metallic Antiferromagnetic 2D Nonlayered CrSe Nanosheets.

ACS Nano

December 2024

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!