Recent studies of single-molecule thermoelectricity have identified families of high-performance molecules. However, in order to translate this discovery into practical thin-film energy-harvesting devices, there is a need for an understanding of the fundamental issues arising when such junctions are placed in parallel. This is relevant because controlled scalability might be used to boost electrical and thermoelectric performance over the current single-junction paradigm. As a first step in this direction, we investigate here the properties of two C molecules placed in parallel and sandwiched between top and bottom graphene electrodes. In contrast with classical conductors, we find that increasing the number of parallel junctions from one to two can cause the electrical conductance to increase by more than a factor of 2. Furthermore, we show that the Seebeck coefficient is sensitive to the number of parallel molecules sandwiched between the electrodes, whereas classically it should be unchanged. This non-classical behaviour of the electrical conductance and Seebeck coefficient are due to inter-junction quantum interference, mediated by the electrodes, which leads to an enhanced response in these vertical molecular devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601468 | PMC |
http://dx.doi.org/10.1038/s41598-017-10938-2 | DOI Listing |
Clin Cancer Res
January 2025
Istituti Fisioterapici Ospitalieri, Italy.
Background: The role of activating alterations in the MAPK pathway in predicting immunotherapy efficacy in lung squamous cell carcinoma (LSCC) patients is largely unknown. The aims of the randomized, phase II SQUINT trial were to assess the efficacy of nivolumab plus ipilimumab (NI) versus platinum-based chemotherapy plus nivolumab (N-CT) and to identify clinically available biomarkers of response to immunotherapy in patients with advanced or metastatic LSCC.
Methods: SQUINT was an open-label, randomized, parallel, non-comparative, phase II trial of NI versus N-CT in chemo-naïve, metastatic or recurrent LSCC adult patients.
BMC Musculoskelet Disord
January 2025
Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran All., Shahnazari St., Madar Sq., Mirdamad Blvd., Tehran, Iran.
Introduction: Groin pain is a common issue among athletes. Adductor-related pain is known as the most common cause of groin pain. Although, non-operative treatments have limited efficacy, Capacitive and Resistive Energy Transfer (TECAR), can be used in the treatment of musculoskeletal conditions.
View Article and Find Full Text PDFBMJ Open
January 2025
Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Malaysia.
Introduction: Yeast beta-glucan (YBG) are recognised for enhancing the immune system by activating macrophages, a key defence mechanism. Given the global prevalence and impact of upper respiratory tract infections (URTIs) on productivity and healthcare costs, YBG has shown promise as a potential therapeutic and preventive strategy for recurrent respiratory tract infections. However, little is known regarding the efficacy of YBG at lower dosages in relation to URTI, fatigue, immune response and uncertainties of how they affect the gut microbiota composition.
View Article and Find Full Text PDFBMJ Open
January 2025
Division of Anesthesia Critical care, Emergency and Pain Medicine, University Hospital Centre Nimes, Nimes, Occitanie, France.
Introduction: Intensive care unit (ICU) patients under mechanical ventilation experience mild-to-severe pain. International guidelines emphasise the importance and benefits of multimodal analgesia to minimise opioid consumption and its side effects. However, no recommendation about drugs or protocol has been formulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!