O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601480 | PMC |
http://dx.doi.org/10.1038/s41467-017-00571-y | DOI Listing |
Insects
September 2024
Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
biting midges were collected using UV light traps from nine livestock farms in Kanchanaburi Province, Thailand. Collections were made one night per month from June 2020 to May 2021 to determine the seasonal changes and spatial distribution of the assemblage. The influence of four environmental factors (temperature, rainfall, humidity, and wind speed), types of animals in each shed (cattle, pigs, and avians), and neighboring animals (those in the other sheds and their proximity) were assessed.
View Article and Find Full Text PDFHealth Sci Rep
August 2024
Department of Immunology, NMIMR, College of Health Sciences University of Ghana Accra Ghana.
Background And Aim: Chronic hepatitis B virus (CHB) infection remains a major public health problem. The American Association for the Study of Liver Diseases (AASLD) 2018 Hepatitis B Guidelines provide that CHB individuals not requiring antiviral therapy yet are monitored to determine the need for antiviral therapy in the future; however, these tests do not include measurement of cytokines and immune cell characterization. This case-control study compared the cytokine and immune checkpoint protein expression profiles between CHB individuals not yet on antiviral treatment and hepatitis B virus (HBV)-negative individuals.
View Article and Find Full Text PDFPLOS Glob Public Health
May 2024
Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America.
Molecular epidemiologic studies of malaria parasites and other pathogens commonly employ amplicon deep sequencing (AmpSeq) of marker genes derived from dried blood spots (DBS) to answer public health questions related to topics such as transmission and drug resistance. As these methods are increasingly employed to inform direct public health action, it is important to rigorously evaluate the risk of false positive and false negative haplotypes derived from clinically-relevant sample types. We performed a control experiment evaluating haplotype recovery from AmpSeq of 5 marker genes (ama1, csp, msp7, sera2, and trap) from DBS containing mixtures of DNA from 1 to 10 known P.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
ACS Nano
April 2024
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
The key to any controlled supramolecular polymerization (CSP) process lies in controlling the nucleation step, which is typically achieved by sequestering monomers in a kinetically trapped state. However, kinetic traps that are shallow cannot prevent spontaneous nucleation, thus limiting the applicability of the CSP in such systems. We use a molecular additive to overcome this limitation by modifying the energy landscape of a competitive self-assembly process and increasing the kinetic stability of an otherwise short-lived trap state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!