A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey. | LitMetric

A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey.

J Chromatogr A

CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exactas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal. Electronic address:

Published: October 2017

Sugarcane honey (SCH) is one of the Madeira Island products par excellence and it is now popular worldwide. Its sui generis and peculiar sensory properties, explained by a variety of volatile compounds including furanic derivatives (FDs), arise mainly from manufacturing and storage conditions. A simple high-throughput approach based on semi-automatic microextraction by packed sorbent (MEPS) combined with ultra-high performance liquid chromatography (UHPLC) was developed and validated for identification and quantification of target FDs in sugarcane honey. A Quality-by-Design (QbD) approach was used as a powerful strategy to optimize analytical conditions for high throughput analysis of FDs in complex sugar-rich food matrices. The optimum point into MEPS-Method Operable Design: Region (MODR) was obtained with R-CX sorbent, acetonitrile (ACN) as elution solvent, three loading cycles and 500μL of sample volume. The optimum point into UHPLC-MODR was obtained with a CORTECS column operating at a temperature of 50°C, ACN as eluent and a flow rate of 125μLmin. The robustness was demonstrated by Monte Carlo simulation and capability analysis for estimation of residual errors. The concentration-response relationship for all FDs were described by polynomial function models, being confirmed by Fisher variance (F-test). The% recoveries were in a range of 91.9-112.1%. Good method precision was observed, yielding relative standard deviations (RSDs) less than 4.9% for repeatability and 8.8% for intermediate precision. The limits of quantitation for the analytes ranged from 30.6 to 737.7μgkg. The MEPS/UHPLC-PDA method revealed an effective and potential analytical tool for SCH authenticity control based on target analysis of FDs allowing a strict control and differentiation from other similar or adulterated products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2017.09.019DOI Listing

Publication Analysis

Top Keywords

sugarcane honey
12
furanic derivatives
8
analysis fds
8
optimum point
8
fds
5
strategy based
4
based chromatographic
4
chromatographic data
4
data combined
4
combined quality-by-design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!